forked from dusty-nv/jetson-inference
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetectnet-camera.py
executable file
·75 lines (58 loc) · 3.02 KB
/
detectnet-camera.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
#!/usr/bin/python
#
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
#
import jetson.inference
import jetson.utils
import argparse
# parse the command line
parser = argparse.ArgumentParser(description="Locate objects in a live camera stream using an object detection DNN.",
formatter_class=argparse.RawTextHelpFormatter, epilog=jetson.inference.detectNet.Usage())
parser.add_argument("--network", type=str, default="pednet", help="pre-trained model to load, see below for options")
parser.add_argument("--threshold", type=float, default=0.5, help="minimum detection threshold to use")
parser.add_argument("--camera", type=str, default="0", help="index of the MIPI CSI camera to use (NULL for CSI camera 0)\nor for VL42 cameras the /dev/video node to use.\nby default, MIPI CSI camera 0 will be used.")
parser.add_argument("--width", type=int, default=1280, help="desired width of camera stream (default is 1280 pixels)")
parser.add_argument("--height", type=int, default=720, help="desired height of camera stream (default is 720 pixels)")
opt, argv = parser.parse_known_args()
# load the object detection network
net = jetson.inference.detectNet(opt.network, argv, opt.threshold)
# create the camera and display
camera = jetson.utils.gstCamera(opt.width, opt.height, opt.camera)
display = jetson.utils.glDisplay()
# process frames until user exits
while display.IsOpen():
# capture the image
img, width, height = camera.CaptureRGBA()
# detect objects in the image (with overlay)
detections = net.Detect(img, width, height)
# print the detections
print("detected {:d} objects in image".format(len(detections)))
for detection in detections:
print(detection)
# render the image
display.RenderOnce(img, width, height)
# update the title bar
display.SetTitle("{:s} | Network {:.0f} FPS".format(opt.network, 1000.0 / net.GetNetworkTime()))
# synchronize with the GPU
if len(detections) > 0:
jetson.utils.cudaDeviceSynchronize()
# print out performance info
net.PrintProfilerTimes()