-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinputs.html
839 lines (825 loc) · 39.6 KB
/
inputs.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta http-equiv="Content-Style-Type" content="text/css" />
<meta name="generator" content="pandoc" />
<!-- <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/tufte-css/1.4/tufte.min.css"/> -->
<link rel="stylesheet" href="https://desperadoshi.github.io/doc/static/envisioned-css/css/envisioned.css"/>
<link rel="stylesheet" href="https://desperadoshi.github.io/doc/static/envisioned-css/css/tablesaw-stackonly.css"/>
<link rel="stylesheet" href="https://desperadoshi.github.io/doc/static/envisioned-css/css/nudge.css"/> <!-- if you want navigation -->
<script src="https://desperadoshi.github.io/doc/static/envisioned-css/js/jquery.js"></script>
<script src="https://desperadoshi.github.io/doc/static/envisioned-css/js/tablesaw-stackonly.js"></script>
<script src="https://desperadoshi.github.io/doc/static/envisioned-css/js/nudge.min.js"></script> <!-- if you want navigation -->
<script type="text/javascript" async
src='https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-AMS-MML_HTMLorMML'>
</script>
<link href="https://fonts.googleapis.com/css?family=Share+Tech+Mono" rel="stylesheet">
<title>Input File Description</title>
<style>
pre {
overflow-x: auto;
background-color: #fafafa;
padding: 1rem;
text-align: left;
}
code {
font-family: 'Share Tech Mono', monospace;
font-size: 1.05em;
}
p, footer, pre.code, div.table-wrapper {
width: 100%;
}
img {
display: block;
margin-left: auto;
margin-right: auto;
width: 66.7%;
}
ul {
list-style-type: circle;
}
.caption {
text-align: center;
}
<!-- blockquote { -->
<!-- border-left: 3px solid darkgray; -->
<!-- padding-left: 10px; -->
<!-- } -->
.row {
display: flex;
}
.column {
flex: 40%;
}
.column img {
width: 100%;
}
table{
border: 2px solid #FFFFFF;
width: 92%;
text-align: center;
}
table td, table.greyGridTable th {
border: 1px solid #FFFFFF;
padding: 3px 4px;
}
table tbody td {
}
table tr:nth-child(even) {
background: #D0E4F5;
}
table thead {
background: #FFFFFF;
border-bottom: 4px solid #333333;
}
table thead th {
font-weight: bold;
color: #333333;
text-align: center;
border-left: 2px solid #333333;
}
table thead th:first-child {
border-left: none;
}
table tfoot td {
}
</style>
</head>
<body>
<div id="header">
<h1 class="title">Input File Description</h1>
<div id="TOC">
<ul>
<li><a href="#grid-file"><span class="toc-section-number">1</span> Grid File</a></li>
<li><a href="#physics-and-equations"><span class="toc-section-number">2</span> Physics and Equations</a></li>
<li><a href="#base-fr-configuration"><span class="toc-section-number">3</span> Base FR Configuration</a></li>
<li><a href="#time-scheme"><span class="toc-section-number">4</span> Time Scheme</a></li>
<li><a href="#initialization"><span class="toc-section-number">5</span> Initialization</a></li>
<li><a href="#boundary-conditions"><span class="toc-section-number">6</span> Boundary Conditions</a><ul>
<li><a href="#base"><span class="toc-section-number">6.1</span> Base</a></li>
<li><a href="#custom-profile"><span class="toc-section-number">6.2</span> Custom Profile</a></li>
<li><a href="#inflow-turbulence-generation"><span class="toc-section-number">6.3</span> Inflow Turbulence Generation</a></li>
</ul></li>
<li><a href="#solution"><span class="toc-section-number">7</span> Solution</a></li>
</ul>
</div>
<div id="wrapper">
<h1 id="grid-file"><span class="header-section-number">1</span> Grid File</h1>
<table style="width:100%;">
<colgroup>
<col width="12%" />
<col width="11%" />
<col width="6%" />
<col width="4%" />
<col width="65%" />
</colgroup>
<thead>
<tr class="header">
<th align="center">Input Variable</th>
<th align="center">Type</th>
<th align="center">Default Value</th>
<th align="center">Note</th>
<th align="left">Description</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td align="center"><code>grid_format</code></td>
<td align="center"><code>integer</code></td>
<td align="center"><code>1</code></td>
<td align="center">\</td>
<td align="left">Specifies the format of the input grid file. <br> <span class="math inline">\(\bullet\)</span> <code>1 := GMSH</code> <br> <span class="math inline">\(\bullet\)</span> <code>2 := CGNS</code></td>
</tr>
<tr class="even">
<td align="center"><code>gridfile</code></td>
<td align="center"><code>character(len=150)</code></td>
<td align="center">""</td>
<td align="center">\</td>
<td align="left">File path to the input grid file relative to the current directory.</td>
</tr>
<tr class="odd">
<td align="center"><code>metis_option</code></td>
<td align="center"><code>integer</code></td>
<td align="center"><code>3</code></td>
<td align="center">\</td>
<td align="left">Specifies the METIS partitioning algorithm to use for partitioning the global grid. <br> <span class="math inline">\(\bullet\)</span> <code>1 :=</code> Create non-weighted partitions based on a multilevel recursive bisection while minimizing the edge cut. For grids with origanized all quad or hex cells, I recommend this option. <br> <span class="math inline">\(\bullet\)</span> <code>2 :=</code> Create non-weighted partitions based on a multilevel kway algorithm while minimizing the edge cut. <br> <span class="math inline">\(\bullet\)</span> <code>3 :=</code> Create non-weighted partitions based on a multilevel kway algorithm while minimizing the total communication volume. <br> <span class="math inline">\(\bullet\)</span> <code>4 :=</code> Create weighted partitions based on a multilevel k-way algorithm while minimizing the total communication volume (weighting is not yet implemented so this is currently the same as option 3).</td>
</tr>
</tbody>
</table>
<h1 id="physics-and-equations"><span class="header-section-number">2</span> Physics and Equations</h1>
<table style="width:100%;">
<colgroup>
<col width="12%" />
<col width="11%" />
<col width="6%" />
<col width="4%" />
<col width="65%" />
</colgroup>
<thead>
<tr class="header">
<th align="center">Input Variable</th>
<th align="center">Type</th>
<th align="center">Default Value</th>
<th align="center">Note</th>
<th align="left">Description</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td align="center"><code>governing_equations</code></td>
<td align="center"><code>integer</code></td>
<td align="center"><code>2</code></td>
<td align="center">\</td>
<td align="left">Specifies the governing equations to use. <br> <span class="math inline">\(\bullet\)</span> <code>1 :=</code> Euler equations <br> <span class="math inline">\(\bullet\)</span> <code>2 :=</code> Navier-Stokes equations</td>
</tr>
<tr class="even">
<td align="center"><code>machref</code></td>
<td align="center"><code>real</code></td>
<td align="center"><code>0.4</code></td>
<td align="center">\</td>
<td align="left">Reference Mach number.</td>
</tr>
<tr class="odd">
<td align="center"><code>gam</code></td>
<td align="center"><code>real</code></td>
<td align="center"><code>1.4</code></td>
<td align="center">\</td>
<td align="left">Reference <span class="math inline">\(\gamma\)</span> (ratio of specific heats).</td>
</tr>
<tr class="even">
<td align="center"><code>ptotref</code></td>
<td align="center"><code>real</code></td>
<td align="center"><code>-1.0</code></td>
<td align="center">\</td>
<td align="left">Reference total pressure (units of Pa).</td>
</tr>
<tr class="odd">
<td align="center"><code>ttotref</code></td>
<td align="center"><code>real</code></td>
<td align="center"><code>-1.0</code></td>
<td align="center">\</td>
<td align="left">Reference total temperature (units of Kelvin).</td>
</tr>
<tr class="even">
<td align="center"><code>rhoref</code></td>
<td align="center"><code>real</code></td>
<td align="center"><code>-1.0</code></td>
<td align="center">\</td>
<td align="left">Reference static density (default evaluates to <span class="math inline">\(1.160833 kg/m^3\)</span> )</td>
</tr>
<tr class="odd">
<td align="center"><code>tref</code></td>
<td align="center"><code>real</code></td>
<td align="center"><code>300.0</code></td>
<td align="center">\</td>
<td align="left">Reference static temperature (units of Kelvin).</td>
</tr>
<tr class="even">
<td align="center"><code>pref</code></td>
<td align="center"><code>real</code></td>
<td align="center"><code>1E5</code></td>
<td align="center">\</td>
<td align="left">Reference static pressure (units of Pa).</td>
</tr>
<tr class="odd">
<td align="center"><code>rgasref</code></td>
<td align="center"><code>real</code></td>
<td align="center"><code>287.15</code></td>
<td align="center">\</td>
<td align="left">Reference gas constant (units of <span class="math inline">\(m^2/(s^2 K)\)</span> ).</td>
</tr>
<tr class="even">
<td align="center"><code>alpha_aoaref</code></td>
<td align="center"><code>real</code></td>
<td align="center"><code>0.0</code></td>
<td align="center">\</td>
<td align="left">Reference angle of attack in the <span class="math inline">\(x-y\)</span> plane.</td>
</tr>
<tr class="odd">
<td align="center"><code>beta_aoaref</code></td>
<td align="center"><code>real</code></td>
<td align="center"><code>0.0</code></td>
<td align="center">\</td>
<td align="left">Reference angle of attack in the <span class="math inline">\(x-z\)</span> plane.</td>
</tr>
<tr class="even">
<td align="center"><code>Pr</code></td>
<td align="center"><code>real</code></td>
<td align="center"><code>0.72</code></td>
<td align="center">\</td>
<td align="left">Laminar Prandtl number.</td>
</tr>
<tr class="odd">
<td align="center"><code>suth_muref</code></td>
<td align="center"><code>real</code></td>
<td align="center"><code>1.716E-5</code></td>
<td align="center">\</td>
<td align="left">Constant <span class="math inline">\(\mu_0\)</span> in Sutherland’s law.</td>
</tr>
<tr class="even">
<td align="center"><code>suth_Tref</code></td>
<td align="center"><code>real</code></td>
<td align="center"><code>273.0</code></td>
<td align="center">\</td>
<td align="left">Constant <span class="math inline">\(T_0\)</span> in Sutherland’s law.</td>
</tr>
<tr class="odd">
<td align="center"><code>suth_Sref</code></td>
<td align="center"><code>real</code></td>
<td align="center"><code>110.4</code></td>
<td align="center">\</td>
<td align="left">Constant <span class="math inline">\(S\)</span> in Sutherland’s law.</td>
</tr>
</tbody>
</table>
<h1 id="base-fr-configuration"><span class="header-section-number">3</span> Base FR Configuration</h1>
<table style="width:100%;">
<colgroup>
<col width="12%" />
<col width="11%" />
<col width="6%" />
<col width="4%" />
<col width="65%" />
</colgroup>
<thead>
<tr class="header">
<th align="center">Input Variable</th>
<th align="center">Type</th>
<th align="center">Default Value</th>
<th align="center">Note</th>
<th align="left">Description</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td align="center"><code>solution_order</code></td>
<td align="center"><code>integer</code></td>
<td align="center"><code>3</code></td>
<td align="center">\</td>
<td align="left">Specifies the degree of the polynomial space, <span class="math inline">\(\mathcal{P_S}\)</span>, to use for the solution. <br> <span style="color:blue">NOTE</span>: The order-of-accuracy is approximately <span class="math inline">\(\mathcal{P_S}+1\)</span>.</td>
</tr>
<tr class="even">
<td align="center"><code>loc_solution_pts</code></td>
<td align="center"><code>integer</code></td>
<td align="center"><code>1</code></td>
<td align="center">\</td>
<td align="left">Specifies the location of the solution points used for tensor products. <br> <span class="math inline">\(\bullet\)</span> <code>1 :=</code> Legendre-Gauss nodes. <br> <span class="math inline">\(\bullet\)</span> <code>2 :=</code> Legendre-Gauss-Lobatto nodes.</td>
</tr>
<tr class="odd">
<td align="center"><code>invs_flux_method</code></td>
<td align="center"><code>integer</code></td>
<td align="center"><code>1</code></td>
<td align="center">\</td>
<td align="left">Specifies the approximate Riemann solver used to compute the common inviscid fluxes at the interfaces. <br> <span class="math inline">\(\bullet\)</span> <code>1 :=</code> Roe flux with entropy fix <br> <span class="math inline">\(\bullet\)</span> <code>2 :=</code> HLLC flux <br> <span class="math inline">\(\bullet\)</span> <code>3 :=</code> LDFSS flux <br> <span class="math inline">\(\bullet\)</span> <code>4 :=</code> Rotated-Roe-HLL flux</td>
</tr>
<tr class="even">
<td align="center"><code>visc_flux_method</code></td>
<td align="center"><code>integer</code></td>
<td align="center"><code>2</code></td>
<td align="center">\</td>
<td align="left">Specifies the method used to compute the common viscous fluxes at the interfaces. <br> <span class="math inline">\(\bullet\)</span> <code>1 :=</code> Bassi-Rebay 1 (BR1) (<span style="color:red">WARNING</span>: high chances of stability issues) <br> <span class="math inline">\(\bullet\)</span> <code>2 :=</code> Bassi-Rebay 2 (BR2) <br> <span class="math inline">\(\bullet\)</span> <code>3 :=</code> Local DG (LDG) (smaller CFL limit than BR2)</td>
</tr>
</tbody>
</table>
<h1 id="time-scheme"><span class="header-section-number">4</span> Time Scheme</h1>
<table style="width:100%;">
<colgroup>
<col width="12%" />
<col width="11%" />
<col width="6%" />
<col width="4%" />
<col width="65%" />
</colgroup>
<thead>
<tr class="header">
<th align="center">Input Variable</th>
<th align="center">Type</th>
<th align="center">Default Value</th>
<th align="center">Note</th>
<th align="left">Description</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td align="center"><code>Runge_Kutta_Scheme</code></td>
<td align="center"><code>integer</code></td>
<td align="center"><code>3</code></td>
<td align="center">\</td>
<td align="left">Specifies which Runge-Kutta method to use. <br> <span class="math inline">\(\bullet\)</span> <code>1 :=</code> Classic n-stage RK method <br> <span class="math inline">\(\bullet\)</span> <code>2 :=</code> 2-stage/2nd-order SSP-RK method <br> <span class="math inline">\(\bullet\)</span> <code>3 :=</code> 3-stage/3rd-order SSP-RK method <br> <span class="math inline">\(\bullet\)</span> <code>4 :=</code> 5-stage/4th-order SSP-RK method <br> <span class="math inline">\(\bullet\)</span> <code>5 :=</code> 5-stage/4th-order Carpenter-Kennedy low storage RK method</td>
</tr>
<tr class="even">
<td align="center"><code>num_timesteps</code></td>
<td align="center"><code>integer</code></td>
<td align="center"><code>25000</code></td>
<td align="center">\</td>
<td align="left">Number of time steps for the simulation.</td>
</tr>
<tr class="odd">
<td align="center"><code>Final_Time</code></td>
<td align="center"><code>real</code></td>
<td align="center"><code>10.0</code></td>
<td align="center">\</td>
<td align="left">Stop when the time within the simulation reaches this value.</td>
</tr>
<tr class="even">
<td align="center"><code>Timestep_Type</code></td>
<td align="center"><code>integer</code></td>
<td align="center"><code>1</code></td>
<td align="center">\</td>
<td align="left">Type of time stepping to use for the simulation. <br> <span class="math inline">\(\bullet\)</span> <code>0 :=</code> Constant global time step. <br> <span class="math inline">\(\bullet\)</span> <code>1 :=</code> global time step from minimum computed cell time step. <br> <span class="math inline">\(\bullet\)</span> <code>-1 :=</code> local time stepping within each cell from computed cell time step. <br> <span class="math inline">\(\bullet\)</span> <code>2 :=</code> global time step from minimum computed solution point time step. (EXPERIMENTAL) <br> <span class="math inline">\(\bullet\)</span> <code>-2 :=</code> local time stepping at each solution point from compute solution point time step. (EXPERIMENTAL)</td>
</tr>
<tr class="odd">
<td align="center"><code>constant_dt</code></td>
<td align="center"><code>real</code></td>
<td align="center"><code>1E-6</code></td>
<td align="center">\</td>
<td align="left">Size of the time step that is used when Timestep Type is set to a constant global time step.</td>
</tr>
<tr class="even">
<td align="center"><code>CFL</code></td>
<td align="center"><code>real</code></td>
<td align="center"><code>0.1</code></td>
<td align="center">\</td>
<td align="left">Analogous to the CFL condition, this is used to scale the time step size to get a maximum stable time step. The maximum value this can be while also keeping a simulation stable is very dependent on the simulation/flow-conditions and input settings, and experimentation is generally required to find a good value. A lower value is more likely to keep a simulation stable, but it will require more time steps to reach either convergence or a given simulation time. Typical values are <span class="math inline">\(0.1 \leq CFL \leq 2\)</span>, but past experience has found simulations that were stable with values up to 7.</td>
</tr>
</tbody>
</table>
<h1 id="initialization"><span class="header-section-number">5</span> Initialization</h1>
<table style="width:100%;">
<colgroup>
<col width="12%" />
<col width="11%" />
<col width="6%" />
<col width="4%" />
<col width="65%" />
</colgroup>
<thead>
<tr class="header">
<th align="center">Input Variable</th>
<th align="center">Type</th>
<th align="center">Default Value</th>
<th align="center">Note</th>
<th align="left">Description</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td align="center"><code>itestcase</code></td>
<td align="center"><code>integer</code></td>
<td align="center"><code>1</code></td>
<td align="center">\</td>
<td align="left">Specifies the test-case/problem to solve, primarily affecting the initialization of the simulation. <br> <span class="math inline">\(\bullet\)</span> <code>1 :=</code> Generic flow, initialize to reference conditions. <br> <span class="math inline">\(\bullet\)</span> <code>2 :=</code> Diagonally propagating Shu version of the isentropic Euler vortex. <br> <span class="math inline">\(\bullet\)</span> <code>3 :=</code> Channel flow (not working)</td>
</tr>
<tr class="even">
<td align="center"><code>load_restart_file</code></td>
<td align="center"><code>logical</code></td>
<td align="center"><code>.FALSE.</code></td>
<td align="center">\</td>
<td align="left">Logical flag used to indicate whether or not to read in a restart file.</td>
</tr>
<tr class="odd">
<td align="center"><code>restart_file</code></td>
<td align="center"><code>character(len=150)</code></td>
<td align="center"><code>out.rst</code></td>
<td align="center">\</td>
<td align="left">File path to the solution restart file that will be read if <code>load_restart_file</code> is true.</td>
</tr>
<tr class="even">
<td align="center"><code>restart_interval</code></td>
<td align="center"><code>integer</code></td>
<td align="center"><code>0</code></td>
<td align="center">\</td>
<td align="left">Number of time steps between writing restart files. <br> <span style="color:blue">NOTE</span>: A restart file is always written after completing the last time step.</td>
</tr>
<tr class="odd">
<td align="center"><code>tiem_ave_file</code></td>
<td align="center"><code>character(len=150)</code></td>
<td align="center"><code>out.ave</code></td>
<td align="center">\</td>
<td align="left">File path to the time-averaged solution restart file that will be read in if <code>load_restart_file</code> and <code>output_time_averaging</code> are both true. The code will add the accumulation of time-averaged flow variables from the new running simulation to the time-averaged flow variables of the previous simulation from which the new simulation restarted.</td>
</tr>
</tbody>
</table>
<h1 id="boundary-conditions"><span class="header-section-number">6</span> Boundary Conditions</h1>
<h2 id="base"><span class="header-section-number">6.1</span> Base</h2>
<table style="width:100%;">
<colgroup>
<col width="12%" />
<col width="11%" />
<col width="6%" />
<col width="4%" />
<col width="65%" />
</colgroup>
<thead>
<tr class="header">
<th align="center">Input Variable</th>
<th align="center">Type</th>
<th align="center">Default Value</th>
<th align="center">Note</th>
<th align="left">Description</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td align="center"><code>bc_input</code></td>
<td align="center"><code>bc_input_t</code></td>
<td align="center">\</td>
<td align="center">\</td>
<td align="left">Derived type to specify boundary conditions. An iterative loop will go through the specified flow conditions and try to compute the remaining unspecified flow conditions. <br> <span style="color:blue">NOTE</span>: A run-time error will occur if either of the following conditions are true: <br> A) The flow conditions are over-specified and inconsistent <br> B) The flow conditions are under-specified and it is unable to compute the remaining unspecified flow conditions. <br> <span style="color:blue">EXAMPLE</span>: An example of a well defined boundary condition using <code>bc_input</code>: <br> <span class="math inline">\(\bullet\)</span> <code>bc_input(1)%name = inflow_subsonic</code> <br> <span class="math inline">\(\bullet\)</span> <code>bc_input(1)%bc_type_string = SubInflow ! Subsonic Inflow BC</code> <br> <span class="math inline">\(\bullet\)</span> <code>bc_input(1)%p_static = 101325.0</code> <br> <span class="math inline">\(\bullet\)</span> <code>bc_input(1)%p_total = 121286.025</code> <br> <span class="math inline">\(\bullet\)</span> <code>bc_input(1)%t_total = 293.15</code> <br> <span style="color:blue">NOTE</span>: You must specify all BCs which should be consistent with those in the grid file.</td>
</tr>
<tr class="even">
<td align="center"><code>bc_input(1)%name</code></td>
<td align="center"><code>character(len=32)</code></td>
<td align="center"><code>""</code></td>
<td align="center">\</td>
<td align="left">Character string that matches the name of a boundary group in the grid file. <br> <span style="color:blue">NOTE</span>: Case (upper/lower-case) does NOT matter. For the periodic BC, in the GMSH grid file, the user has to specify which face group pairs which one. For example, the face group no.4 is named <code>Periodic-1</code> and it pairs face group no.5. So the face group no.5 must be named <code>Periodic-2</code>. In the meantime, another periodic face group pair is named <code>Periodic-3</code> and <code>Periodic-4</code>. The ending number is used to pair face groups.</td>
</tr>
<tr class="odd">
<td align="center"><code>bc_input(1)%bc_type_string</code></td>
<td align="center"><code>character(len=32)</code></td>
<td align="center"><code>""</code></td>
<td align="center">\</td>
<td align="left">The boundary conditions are specified in the grid file and the array <code>bface(1,:)</code> is updated accordingly. BC by this <code>bc_type_string</code> must be consistent with the grid BC. Because <code>bc_input</code> is used to set up <code>bc_in</code>. One of the usages of <code>bc_in</code> is to provide the flow condition for a BC. <br> Valid values for boundary condition types are: <br> <span class="math inline">\(\bullet\)</span> Subsonic inflow : <code>SubInflow</code> <br> <span class="math inline">\(\bullet\)</span> No-slip adiabatic wall : <code>AdiabaticWall</code> <br> <span class="math inline">\(\bullet\)</span> Slip wall : <code>SlipWall</code></td>
</tr>
<tr class="even">
<td align="center"><code>bc_input(1)%p_static</code></td>
<td align="center"><code>real</code></td>
<td align="center"><code>-1.0</code></td>
<td align="center">\</td>
<td align="left">Static pressure (units of Pa).</td>
</tr>
<tr class="odd">
<td align="center"><code>bc_input(1)%t_static</code></td>
<td align="center"><code>real</code></td>
<td align="center"><code>-1.0</code></td>
<td align="center">\</td>
<td align="left">Static temperature (units of Kelvin).</td>
</tr>
<tr class="even">
<td align="center"><code>bc_input(1)%rho_static</code></td>
<td align="center"><code>real</code></td>
<td align="center"><code>-1.0</code></td>
<td align="center">\</td>
<td align="left">Static density (units of <span class="math inline">\(kg/m^3\)</span>)</td>
</tr>
<tr class="odd">
<td align="center"><code>bc_input(1)%mach</code></td>
<td align="center"><code>real</code></td>
<td align="center"><code>0.4</code></td>
<td align="center">\</td>
<td align="left">Mach number. (dimensionless)</td>
</tr>
<tr class="even">
<td align="center"><code>bc_input(1)%vx</code></td>
<td align="center"><code>real</code></td>
<td align="center"><code>0.0</code></td>
<td align="center">\</td>
<td align="left">Velocity in the x coordinate direction (units of m/s)</td>
</tr>
<tr class="odd">
<td align="center"><code>bc_input(1)%vy</code></td>
<td align="center"><code>real</code></td>
<td align="center"><code>0.0</code></td>
<td align="center">\</td>
<td align="left">Velocity in the y coordinate direction (units of m/s)</td>
</tr>
<tr class="even">
<td align="center"><code>bc_input(1)%vz</code></td>
<td align="center"><code>real</code></td>
<td align="center"><code>0.0</code></td>
<td align="center">\</td>
<td align="left">Velocity in the z coordinate direction (units of m/s)</td>
</tr>
<tr class="odd">
<td align="center"><code>bc_input(1)%p_total</code></td>
<td align="center"><code>real</code></td>
<td align="center"><code>-1.0</code></td>
<td align="center">\</td>
<td align="left">Total pressure (units of Pa).</td>
</tr>
<tr class="even">
<td align="center"><code>bc_input(1)%t_total</code></td>
<td align="center"><code>real</code></td>
<td align="center"><code>-1.0</code></td>
<td align="center">\</td>
<td align="left">Total temperature (units of Kelvin).</td>
</tr>
<tr class="odd">
<td align="center"><code>bc_input(1)%rho_total</code></td>
<td align="center"><code>real</code></td>
<td align="center"><code>-1.0</code></td>
<td align="center">\</td>
<td align="left">Total density (units of <span class="math inline">\(kg/m^3\)</span>)</td>
</tr>
<tr class="even">
<td align="center"><code>bc_input(1)%alpha_aoa</code></td>
<td align="center"><code>real</code></td>
<td align="center"><code>0.0</code></td>
<td align="center">\</td>
<td align="left">Angle of attack in the <span class="math inline">\(x-y\)</span> plane. (dimensionless)</td>
</tr>
<tr class="odd">
<td align="center"><code>bc_input(1)%beta_aoa</code></td>
<td align="center"><code>real</code></td>
<td align="center"><code>0.0</code></td>
<td align="center">\</td>
<td align="left">Angle of attack in the <span class="math inline">\(x-z\)</span> plane. (dimensionless)</td>
</tr>
<tr class="even">
<td align="center"><code>bc_input(1)%wall_temp</code></td>
<td align="center"><code>real</code></td>
<td align="center"><code>-1.0</code></td>
<td align="center">\</td>
<td align="left">Temperature for isothermal wall (units of Kelvin).</td>
</tr>
<tr class="odd">
<td align="center"><code>walls_are_exact</code></td>
<td align="center"><code>logical</code></td>
<td align="center"><code>.TRUE.</code></td>
<td align="center">\</td>
<td align="left">Logical flag that determines if the solution on wall boundary conditions are treated as either the exact flow conditions or the ghost state that equals the exact flow conditions when averaged with the interior state. <br> <span class="math inline">\(\bullet\)</span> <code>.TRUE. :=</code> The wall boundary solution is the exact wall boundary condition, e.g., <span class="math inline">\([u_{wall}; v_{wall}; w_{wall}] = 0\)</span> for a no-slip wall. <br> <span class="math inline">\(\bullet\)</span> <code>.FALSE. :=</code> The average of the wall boundary solution and the interior solution on the boundary face recovers the exact wall boundary condition, e.g., <span class="math inline">\([u_{wall}; v_{wall}; w_{wall}] = − [u_{wall}; v_{wall}; w_{wall}]\)</span> for a no-slip wall. <br> <span style="color:blue">NOTE</span>: Hartmann (2014) reports that using exact wall boundary conditions seems to be more accurate on coarse grids and for lower values of solution order, whereas using the averaging method seems to be a little more stable. Details can be found at <code>http://elib.dlr.de/90967/1/hartmann_leicht_VKI_LS_2014-3.pdf</code></td>
</tr>
<tr class="even">
<td align="center"><code>sub_inflow_method</code></td>
<td align="center"><code>integer</code></td>
<td align="center"><code>1</code></td>
<td align="center">\</td>
<td align="left">Specifies which subsonic inflow boundary condition algorithm to use. <br> <span class="math inline">\(\bullet\)</span> <code>1 :=</code> Hold the total pressure and total temperature constant at the inflow, use the outgoing characteristic from the interior to perform a Newton iteration to get the static temperature, speed of sound, and normal velocity magnitude for the exterior state. <br> <span class="math inline">\(\bullet\)</span> <code>2 :=</code> Use the inflow static density and velocity, and the interior static pressure. <br> <span class="math inline">\(\bullet\)</span> <code>3 :=</code> Hold the inflow total pressure and total temperature constant, and use the interior velocity. <br> <span class="math inline">\(\bullet\)</span> <code>4 :=</code> Hold the inflow total pressure and total temperature constant, and use the interior static pressure. <br> <span style="color:blue">NOTE</span>: It is highly recommended to use option 1.</td>
</tr>
</tbody>
</table>
<h2 id="custom-profile"><span class="header-section-number">6.2</span> Custom Profile</h2>
<table style="width:100%;">
<colgroup>
<col width="12%" />
<col width="11%" />
<col width="6%" />
<col width="4%" />
<col width="65%" />
</colgroup>
<thead>
<tr class="header">
<th align="center">Input Variable</th>
<th align="center">Type</th>
<th align="center">Default Value</th>
<th align="center">Note</th>
<th align="left">Description</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td align="center"><code>cpbc_prof_input</code></td>
<td align="center"><code>cpbc_prof_input_t</code></td>
<td align="center">\</td>
<td align="center">\</td>
<td align="left">Input file for the custom profile BC. The first line of the input file is a comment line starting with <code>!</code>.</td>
</tr>
<tr class="even">
<td align="center"><code>cpbc_prof_input%fname</code></td>
<td align="center"><code>character(len=256)</code></td>
<td align="center"><code>""</code></td>
<td align="center">\</td>
<td align="left">File name of the input file for the custom profile BC.</td>
</tr>
<tr class="odd">
<td align="center"><code>cpbc_prof_input%fdelim</code></td>
<td align="center"><code>character</code></td>
<td align="center"><code>,</code></td>
<td align="center">\</td>
<td align="left">Column delimiter in the input file for the custom profile BC.</td>
</tr>
<tr class="even">
<td align="center"><code>cpbc_prof_input%dat_dir</code></td>
<td align="center"><code>character</code></td>
<td align="center"><code>""</code></td>
<td align="center">\</td>
<td align="left">The input profile is a 1D curve for each primitive variable. <code>dat_dir</code> indicates the direction along with the input profile is distributed. Valid values are <code>X</code> or <code>Y</code>. <code>Z</code> is always the spanwise direction in 3D. In 2D, there is no <code>Z</code>.</td>
</tr>
</tbody>
</table>
<h2 id="inflow-turbulence-generation"><span class="header-section-number">6.3</span> Inflow Turbulence Generation</h2>
<table style="width:100%;">
<colgroup>
<col width="12%" />
<col width="11%" />
<col width="6%" />
<col width="4%" />
<col width="65%" />
</colgroup>
<thead>
<tr class="header">
<th align="center">Input Variable</th>
<th align="center">Type</th>
<th align="center">Default Value</th>
<th align="center">Note</th>
<th align="left">Description</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td align="center"><code>tgbc_bg_grid_input</code></td>
<td align="center"><code>tgbc_bg_grid_input_t</code></td>
<td align="center">\</td>
<td align="center">\</td>
<td align="left">Background mesh parameters for turbulence generation BC.</td>
</tr>
<tr class="even">
<td align="center"><code>tgbc_bg_grid_input%loc_str</code></td>
<td align="center"><code>character</code></td>
<td align="center"><code>""</code></td>
<td align="center">\</td>
<td align="left">It indicates where the background mesh is located. <code>loc_str=X</code> indicates that the background mesh is located at a plane of <span class="math inline">\(x=const\)</span>, i.e. <span class="math inline">\(y-z\)</span> plane. Valid values are <code>X</code> or <code>Z</code>.</td>
</tr>
<tr class="odd">
<td align="center"><code>tgbc_bg_grid_input%nx</code></td>
<td align="center"><code>integer</code></td>
<td align="center"><code>0</code></td>
<td align="center">\</td>
<td align="left">The number of grid cells along the <span class="math inline">\(x\)</span> direction in the background mesh for the turbulence generation BC. If the background mesh is located on the <span class="math inline">\(y-z\)</span> plane, <code>nx</code> does not need to be specified and will not be used in the code.</td>
</tr>
<tr class="even">
<td align="center"><code>tgbc_bg_grid_input%ny</code></td>
<td align="center"><code>integer</code></td>
<td align="center"><code>0</code></td>
<td align="center">\</td>
<td align="left">The number of grid cells along the <span class="math inline">\(y\)</span> direction in the background mesh for the turbulence generation BC.</td>
</tr>
<tr class="odd">
<td align="center"><code>tgbc_bg_grid_input%nz</code></td>
<td align="center"><code>integer</code></td>
<td align="center"><code>0</code></td>
<td align="center">\</td>
<td align="left">The number of grid cells along the <span class="math inline">\(z\)</span> direction in the background mesh for the turbulence generation BC. <span class="math inline">\(z\)</span> direction is assumed to be the spanwise direction in 3D simulation.</td>
</tr>
<tr class="even">
<td align="center"><code>tgbc_bg_grid_input%xl</code></td>
<td align="center"><code>real</code></td>
<td align="center"><code>1E12</code></td>
<td align="center">\</td>
<td align="left">The lower bound of the domain of the background mesh along <span class="math inline">\(x\)</span> direction. If <code>loc_str=X</code>, <code>xl</code> and <code>xh</code> will be not used and do not need to be specified in the input file.</td>
</tr>
<tr class="odd">
<td align="center"><code>tgbc_bg_grid_input%xh</code></td>
<td align="center"><code>real</code></td>
<td align="center"><code>0.0</code></td>
<td align="center">\</td>
<td align="left">The upper bound of the domain of the background mesh along <span class="math inline">\(x\)</span> direction.</td>
</tr>
<tr class="even">
<td align="center"><code>tgbc_bg_grid_input%yl</code></td>
<td align="center"><code>real</code></td>
<td align="center"><code>1E12</code></td>
<td align="center">\</td>
<td align="left">The lower bound of the domain of the background mesh along <span class="math inline">\(y\)</span> direction.</td>
</tr>
<tr class="odd">
<td align="center"><code>tgbc_bg_grid_input%yh</code></td>
<td align="center"><code>real</code></td>
<td align="center"><code>0.0</code></td>
<td align="center">\</td>
<td align="left">The upper bound of the domain of the background mesh along <span class="math inline">\(y\)</span> direction.</td>
</tr>
<tr class="even">
<td align="center"><code>tgbc_bg_grid_input%zl</code></td>
<td align="center"><code>real</code></td>
<td align="center"><code>1E12</code></td>
<td align="center">\</td>
<td align="left">The lower bound of the domain of the background mesh along <span class="math inline">\(z\)</span> direction. <span class="math inline">\(z\)</span> direction is the spanwise direction. In 3D, <code>zl</code> and <code>zh</code> are always required.</td>
</tr>
<tr class="odd">
<td align="center"><code>tgbc_bg_grid_input%zh</code></td>
<td align="center"><code>real</code></td>
<td align="center"><code>0.0</code></td>
<td align="center">\</td>
<td align="left">The upper bound of the domain of the background mesh along <span class="math inline">\(z\)</span> direction.</td>
</tr>
</tbody>
</table>
<h1 id="solution"><span class="header-section-number">7</span> Solution</h1>
<table style="width:100%;">
<colgroup>
<col width="12%" />
<col width="11%" />
<col width="6%" />
<col width="4%" />
<col width="65%" />
</colgroup>
<thead>
<tr class="header">
<th align="center">Input Variable</th>
<th align="center">Type</th>
<th align="center">Default Value</th>
<th align="center">Note</th>
<th align="left">Description</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td align="center"><code>iter_out_interval</code></td>
<td align="center"><code>integer</code></td>
<td align="center"><code>1</code></td>
<td align="center">\</td>
<td align="left">Number of time steps between writing time-stepping and residual/convergence statistics to standard output.</td>
</tr>
<tr class="even">
<td align="center"><code>results_interval</code></td>
<td align="center"><code>integer</code></td>
<td align="center"><code>0</code></td>
<td align="center">\</td>
<td align="left">Number of time steps between writing residual/convergence statistics for all conserved and primitive variables to the file <code>results.dat</code>.</td>
</tr>
<tr class="odd">
<td align="center"><code>output_interval</code></td>
<td align="center"><code>integer</code></td>
<td align="center"><code>-5</code></td>
<td align="center">\</td>
<td align="left">Number of time steps between writing CGNS solution files.</td>
</tr>
<tr class="even">
<td align="center"><code>output_dir</code></td>
<td align="center"><code>character(len=150)</code></td>
<td align="center"><code>.</code></td>
<td align="center">\</td>
<td align="left">File path to the directory used for writing output files. <br> <span style="color:blue">NOTE</span>: If one is available, it is recommended that the output directory be located on a Lustre file system in order to get the best I/O performance possible.</td>
</tr>
<tr class="odd">
<td align="center"><code>output_order</code></td>
<td align="center"><code>integer</code></td>
<td align="center"><code>-3</code></td>
<td align="center">\</td>
<td align="left">Specifies the degree of the polynomial space used to represent the solution in the CGNS solution files. This simply allows the ability to over-sample the solution polynomial which provides a smoother solution within each cells when visualizing the solution. <br> <span style="color:blue">NOTE</span>: This is only used if output order > solution order.</td>
</tr>
<tr class="even">
<td align="center"><code>loc_output_pts</code></td>
<td align="center"><code>integer</code></td>
<td align="center"><code>0</code></td>
<td align="center">\</td>
<td align="left">Specifies the location of the nodal points within the grid cells when writing the solution to the CGNS solution files. <br> <span class="math inline">\(\bullet\)</span> <code>0 :=</code> Equi-distant nodes <br> <span class="math inline">\(\bullet\)</span> <code>1 :=</code> Legendre-Gauss nodes <br> <span class="math inline">\(\bullet\)</span> <code>2 :=</code> Legendre-Gauss-Lobatto nodes <br> <span style="color:blue">NOTE</span>: Using Legendre-Gauss nodes for the CGNS solution files will result in empty space between all grid cells because there is no connectivity information between cells.</td>
</tr>
<tr class="odd">
<td align="center"><code>convergence_order_abs_res</code></td>
<td align="center"><code>real</code></td>
<td align="center"><code>-16.0</code></td>
<td align="center">\</td>
<td align="left">This is the convergence goal for the orders of magnitude of the absolute residual.</td>
</tr>
<tr class="even">
<td align="center"><code>convergence_order_max_res</code></td>
<td align="center"><code>real</code></td>
<td align="center"><code>-16.0</code></td>
<td align="center">\</td>
<td align="left">This is the convergence goal for the orders of magnitude reduction of the residual relative to the maximum value of the residual during the simulation.</td>
</tr>
<tr class="odd">
<td align="center"><code>output_time_averaging</code></td>
<td align="center"><code>logical</code></td>
<td align="center"><code>.FALSE.</code></td>
<td align="center">\</td>
<td align="left">Logical flag that enables/disables the accumulation of timeaveraged flow variables. If enabled, time-averaged restart and CGNS solution files will be written whenever the standard restart and CGNS solution files are written.</td>
</tr>
</tbody>
</table>
</div>
</body>
</html>