forked from AlexeyAB/darknet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvolutional_layer.h
68 lines (54 loc) · 3.16 KB
/
convolutional_layer.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#ifndef CONVOLUTIONAL_LAYER_H
#define CONVOLUTIONAL_LAYER_H
#include "dark_cuda.h"
#include "image.h"
#include "activations.h"
#include "layer.h"
#include "network.h"
typedef layer convolutional_layer;
#ifdef __cplusplus
extern "C" {
#endif
#ifdef GPU
void forward_convolutional_layer_gpu(convolutional_layer layer, network_state state);
void backward_convolutional_layer_gpu(convolutional_layer layer, network_state state);
void update_convolutional_layer_gpu(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay, float loss_scale);
void push_convolutional_layer(convolutional_layer layer);
void pull_convolutional_layer(convolutional_layer layer);
void add_bias_gpu(float *output, float *biases, int batch, int n, int size);
void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size);
#ifdef CUDNN
void cudnn_convolutional_setup(layer *l, int cudnn_preference, size_t workspace_size_specify);
void create_convolutional_cudnn_tensors(layer *l);
void cuda_convert_f32_to_f16(float* input_f32, size_t size, float *output_f16);
#endif
#endif
void free_convolutional_batchnorm(convolutional_layer *l);
size_t get_convolutional_workspace_size(layer l);
convolutional_layer make_convolutional_layer(int batch, int steps, int h, int w, int c, int n, int groups, int size, int stride_x, int stride_y, int dilation, int padding, ACTIVATION activation, int batch_normalize, int binary, int xnor, int adam, int use_bin_output, int index, int antialiasing, convolutional_layer *share_layer, int assisted_excitation, int deform, int train);
void denormalize_convolutional_layer(convolutional_layer l);
void set_specified_workspace_limit(convolutional_layer *l, size_t workspace_size_limit);
void resize_convolutional_layer(convolutional_layer *layer, int w, int h);
void forward_convolutional_layer(const convolutional_layer layer, network_state state);
void update_convolutional_layer(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay);
image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_weights);
void binarize_weights(float *weights, int n, int size, float *binary);
void swap_binary(convolutional_layer *l);
void binarize_weights2(float *weights, int n, int size, char *binary, float *scales);
void binary_align_weights(convolutional_layer *l);
void backward_convolutional_layer(convolutional_layer layer, network_state state);
void add_bias(float *output, float *biases, int batch, int n, int size);
void backward_bias(float *bias_updates, float *delta, int batch, int n, int size);
image get_convolutional_image(convolutional_layer layer);
image get_convolutional_delta(convolutional_layer layer);
image get_convolutional_weight(convolutional_layer layer, int i);
int convolutional_out_height(convolutional_layer layer);
int convolutional_out_width(convolutional_layer layer);
void rescale_weights(convolutional_layer l, float scale, float trans);
void rgbgr_weights(convolutional_layer l);
void assisted_excitation_forward(convolutional_layer l, network_state state);
void assisted_excitation_forward_gpu(convolutional_layer l, network_state state);
#ifdef __cplusplus
}
#endif
#endif