forked from AlexeyAB/darknet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlayer.h
338 lines (289 loc) · 6.45 KB
/
layer.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
#ifndef BASE_LAYER_H
#define BASE_LAYER_H
#include "activations.h"
#include "stddef.h"
#include "tree.h"
#ifdef __cplusplus
extern "C" {
#endif
//struct network_state;
//struct layer;
//typedef struct layer layer;
//typedef enum {
// CONVOLUTIONAL,
// DECONVOLUTIONAL,
// CONNECTED,
// MAXPOOL,
// SOFTMAX,
// DETECTION,
// DROPOUT,
// CROP,
// ROUTE,
// COST,
// NORMALIZATION,
// AVGPOOL,
// LOCAL,
// SHORTCUT,
// ACTIVE,
// RNN,
// GRU,
// CRNN,
// BATCHNORM,
// NETWORK,
// XNOR,
// REGION,
// YOLO,
// REORG,
// UPSAMPLE,
// REORG_OLD,
// BLANK
//} LAYER_TYPE;
//typedef enum{
// SSE, MASKED, SMOOTH
//} COST_TYPE;
//typedef struct {
// int batch;
// float learning_rate;
// float momentum;
// float decay;
// int adam;
// float B1;
// float B2;
// float eps;
// int t;
//} update_args;
/*
struct layer{
LAYER_TYPE type;
ACTIVATION activation;
COST_TYPE cost_type;
void (*forward) (struct layer, struct network_state);
void (*backward) (struct layer, struct network_state);
void (*update) (struct layer, int, float, float, float);
void (*forward_gpu) (struct layer, struct network_state);
void (*backward_gpu) (struct layer, struct network_state);
void (*update_gpu) (struct layer, int, float, float, float);
int batch_normalize;
int shortcut;
int batch;
int forced;
int flipped;
int inputs;
int outputs;
int truths;
int h,w,c;
int out_h, out_w, out_c;
int n;
int max_boxes;
int groups;
int size;
int side;
int stride;
int reverse;
int spatial;
int pad;
int sqrt;
int flip;
int index;
int binary;
int xnor;
int use_bin_output;
int steps;
int hidden;
float dot;
float angle;
float jitter;
float saturation;
float exposure;
float shift;
float ratio;
float learning_rate_scale;
int focal_loss;
int noloss;
int softmax;
int classes;
int coords;
int background;
int rescore;
int objectness;
int does_cost;
int joint;
int noadjust;
int reorg;
int log;
int tanh;
int *mask;
int total;
float bflops;
int adam;
float B1;
float B2;
float eps;
int t;
float *m;
float *v;
float * bias_m;
float * bias_v;
float * scale_m;
float * scale_v;
tree *softmax_tree;
int *map;
float alpha;
float beta;
float kappa;
float coord_scale;
float object_scale;
float noobject_scale;
float mask_scale;
float class_scale;
int bias_match;
int random;
float ignore_thresh;
float truth_thresh;
float thresh;
float focus;
int classfix;
int absolute;
int onlyforward;
int stopbackward;
int dontload;
int dontloadscales;
float temperature;
float probability;
float scale;
int *indexes;
float *rand;
float *cost;
char *cweights;
float *state;
float *prev_state;
float *forgot_state;
float *forgot_delta;
float *state_delta;
float *concat;
float *concat_delta;
float *binary_weights;
float *biases;
float *bias_updates;
float *scales;
float *scale_updates;
float *weights;
float *weight_updates;
char *align_bit_weights_gpu;
float *mean_arr_gpu;
float *align_workspace_gpu;
float *transposed_align_workspace_gpu;
int align_workspace_size;
char *align_bit_weights;
float *mean_arr;
int align_bit_weights_size;
int lda_align;
int new_lda;
int bit_align;
float *col_image;
int * input_layers;
int * input_sizes;
float * delta;
float * output;
float * loss;
float * squared;
float * norms;
float * spatial_mean;
float * mean;
float * variance;
float * mean_delta;
float * variance_delta;
float * rolling_mean;
float * rolling_variance;
float * x;
float * x_norm;
struct layer *input_layer;
struct layer *self_layer;
struct layer *output_layer;
struct layer *input_gate_layer;
struct layer *state_gate_layer;
struct layer *input_save_layer;
struct layer *state_save_layer;
struct layer *input_state_layer;
struct layer *state_state_layer;
struct layer *input_z_layer;
struct layer *state_z_layer;
struct layer *input_r_layer;
struct layer *state_r_layer;
struct layer *input_h_layer;
struct layer *state_h_layer;
float *z_cpu;
float *r_cpu;
float *h_cpu;
float *binary_input;
size_t workspace_size;
#ifdef GPU
float *z_gpu;
float *r_gpu;
float *h_gpu;
int *indexes_gpu;
float * prev_state_gpu;
float * forgot_state_gpu;
float * forgot_delta_gpu;
float * state_gpu;
float * state_delta_gpu;
float * gate_gpu;
float * gate_delta_gpu;
float * save_gpu;
float * save_delta_gpu;
float * concat_gpu;
float * concat_delta_gpu;
// adam
float *m_gpu;
float *v_gpu;
float *bias_m_gpu;
float *scale_m_gpu;
float *bias_v_gpu;
float *scale_v_gpu;
float *binary_input_gpu;
float *binary_weights_gpu;
float * mean_gpu;
float * variance_gpu;
float * rolling_mean_gpu;
float * rolling_variance_gpu;
float * variance_delta_gpu;
float * mean_delta_gpu;
float * col_image_gpu;
float * x_gpu;
float * x_norm_gpu;
float * weights_gpu;
float * weight_updates_gpu;
float * weights_gpu16;
float * weight_updates_gpu16;
float * biases_gpu;
float * bias_updates_gpu;
float * scales_gpu;
float * scale_updates_gpu;
float * output_gpu;
float * loss_gpu;
float * delta_gpu;
float * rand_gpu;
float * squared_gpu;
float * norms_gpu;
#ifdef CUDNN
cudnnTensorDescriptor_t srcTensorDesc, dstTensorDesc;
cudnnTensorDescriptor_t srcTensorDesc16, dstTensorDesc16;
cudnnTensorDescriptor_t dsrcTensorDesc, ddstTensorDesc;
cudnnTensorDescriptor_t dsrcTensorDesc16, ddstTensorDesc16;
cudnnTensorDescriptor_t normTensorDesc, normDstTensorDesc, normDstTensorDescF16;
cudnnFilterDescriptor_t weightDesc, weightDesc16;
cudnnFilterDescriptor_t dweightDesc, dweightDesc16;
cudnnConvolutionDescriptor_t convDesc;
cudnnConvolutionFwdAlgo_t fw_algo, fw_algo16;
cudnnConvolutionBwdDataAlgo_t bd_algo, bd_algo16;
cudnnConvolutionBwdFilterAlgo_t bf_algo, bf_algo16;
cudnnPoolingDescriptor_t poolingDesc;
#endif // CUDNN
#endif // GPU
};
*/
//void free_layer(layer);
#ifdef __cplusplus
}
#endif
#endif