-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathlayers.py
81 lines (70 loc) · 3.27 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import math
import numpy as np
import torch
import time
from torch.nn.parameter import Parameter
from torch.nn.modules.module import Module
class GraphConvolution(Module):
"""
Simple GCN layer, similar to https://arxiv.org/abs/1609.02907
"""
def __init__(self, in_features_v, out_features_v, in_features_e, out_features_e, bias=True, node_layer=True):
super(GraphConvolution, self).__init__()
self.in_features_e = in_features_e
self.out_features_e = out_features_e
self.in_features_v = in_features_v
self.out_features_v = out_features_v
if node_layer:
print("this is a node layer")
self.node_layer = True
self.weight = Parameter(torch.FloatTensor(in_features_v, out_features_v))
self.p = Parameter(torch.from_numpy(np.random.normal(size=(1, in_features_e))).float())
if bias:
self.bias = Parameter(torch.FloatTensor(out_features_v))
else:
self.register_parameter('bias', None)
else:
print("this is an edge layer")
self.node_layer = False
self.weight = Parameter(torch.FloatTensor(in_features_e, out_features_e))
self.p = Parameter(torch.from_numpy(np.random.normal(size=(1, in_features_v))).float())
if bias:
self.bias = Parameter(torch.FloatTensor(out_features_e))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1. / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, H_v, H_e, adj_e, adj_v, T):
if self.node_layer:
multiplier1 = torch.spmm(T, torch.diag((H_e @ self.p.t()).t()[0])) @ T.to_dense().t()
mask1 = torch.eye(multiplier1.shape[0])
M1 = mask1 * torch.ones(multiplier1.shape[0]) + (1. - mask1)*multiplier1
adjusted_A = torch.mul(M1, adj_v.to_dense())
'''
print("adjusted_A is ", adjusted_A)
normalized_adjusted_A = adjusted_A / adjusted_A.max(0, keepdim=True)[0]
print("normalized adjusted A is ", normalized_adjusted_A)
'''
# to avoid missing feature's influence, we don't normalize the A
output = torch.mm(adjusted_A, torch.mm(H_v, self.weight))
if self.bias is not None:
ret = output + self.bias
return ret, H_e
else:
multiplier2 = torch.spmm(T.t(), torch.diag((H_v @ self.p.t()).t()[0])) @ T.to_dense()
mask2 = torch.eye(multiplier2.shape[0])
M3 = mask2 * torch.ones(multiplier2.shape[0]) + (1. - mask2)*multiplier2
adjusted_A = torch.mul(M3, adj_e.to_dense())
normalized_adjusted_A = adjusted_A / adjusted_A.max(0, keepdim=True)[0]
output = torch.mm(normalized_adjusted_A, torch.mm(H_e, self.weight))
if self.bias is not None:
ret = output + self.bias
return H_v, ret
def __repr__(self):
return self.__class__.__name__ + ' (' \
+ str(self.in_features) + ' -> ' \
+ str(self.out_features) + ')'