-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathqtcs.py
579 lines (513 loc) · 21 KB
/
qtcs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
# -*- coding:utf-8 -*-
import sys
from random import choice
from binary_heap import *
from collections import defaultdict
import time
class Graph:
def __init__(self, dataset):
self.dataset = dataset
self.tadj_list, self.edge_stream,self.T = self.TemporalGraph()
print("number of nodes: " + str(len(self.tadj_list)))
number, self.tmax = 0, 0
for u in self.tadj_list:
tset = set()
number += len(self.tadj_list[u])
for v in self.tadj_list[u]:
for t in self.tadj_list[u][v]:
tset.add(t)
if len(tset) > self.tmax:
self.tmax = len(tset)
print("number of static edges: " + str(number / 2))
print("number of temporal edges: " + str(len(self.edge_stream) / 2))
print("number of timestamp: "+str(self.T))
print("self.tmax:" + str(self.tmax))
self.number_temporal_edge=len(self.edge_stream) / 2
self.ttp, self.dangling_state, self.t_vertex,self.number_t_vertex = self.Ttp()
def TemporalGraph(self):
tadj_list, temp = {}, set()
print(self.dataset + " is loading...")
starttime = time.time()
with open(self.dataset, 'r') as file:
lines = file.readlines()
for line in lines:
line = line.split()
from_id, to_id, time_id = int(line[0]), int(line[1]), int(line[2])
if from_id == to_id:
continue
for (f_id, t_id) in [(from_id, to_id), (to_id, from_id)]:
temp.add((f_id, t_id, time_id))
temp = list(temp)
temp.sort(key=lambda x: x[2])
edge_stream = [(temp[0][0], temp[0][1], 1)]
t_index, t_current = 1, temp[0][2]
for i in range(1, len(temp)):
if temp[i][2] != t_current:
t_index += 1
t_current = temp[i][2]
edge_stream.append((temp[i][0], temp[i][1], t_index))
for f_id, t_id, time_id in edge_stream:
if f_id in tadj_list:
if t_id in tadj_list[f_id]:
tadj_list[f_id][t_id].add(time_id)
else:
tadj_list[f_id][t_id] = {time_id}
else:
tadj_list[f_id] = {}
tadj_list[f_id][t_id] = {time_id}
endtime = time.time()
print("loading_graph_time(s)" + str(endtime - starttime))
return (tadj_list, edge_stream,t_index)
def Ttp(self):
starttime = time.time()
ttp, tnode_out_adj_list = {}, {}
dangling_state = set()
for (u, v, t) in self.edge_stream:
if u in tnode_out_adj_list:
for t1 in tnode_out_adj_list[u]:
if t1 == t:
continue
tnode_out_adj_list[u][t1].add((v, t))
if v in tnode_out_adj_list:
tnode_out_adj_list[v][t] = set()
else:
tnode_out_adj_list[v] = {}
tnode_out_adj_list[v][t] = set()
for v in tnode_out_adj_list:
for t in tnode_out_adj_list[v]:
ttp[(v, t)] = {}
if len(tnode_out_adj_list[v][t]) == 0:
ttp[(v, t)][(v, t)] = 1
dangling_state.add((v, t))
continue
sum1 = 0
for (u, t1) in tnode_out_adj_list[v][t]:
sum1 = sum1 + self.f(t1 - t)
for (u, t1) in tnode_out_adj_list[v][t]:
ttp[(v, t)][(u, t1)] = (self.f(t1 - t)) / sum1
endtime = time.time()
print("compute_ttp_time(s)" + str(endtime - starttime))
t_vertex = {}
number_t_vertex=0
for u in self.tadj_list:
for v in self.tadj_list[u]:
for t in self.tadj_list[u][v]:
if u not in t_vertex:
t_vertex[u] = {t}
else:
t_vertex[u].add(t)
number_t_vertex+=len(t_vertex[u])
return ttp, dangling_state, t_vertex,number_t_vertex
def f(self, x):
return 1 / x
def core_decompisition(self):
deg, core_number, core_renumber = {}, {}, {}
max_core = 0
myMinHeap = MinHeap([])
n = len(self.tadj_list)
n_core = 0
for u in self.tadj_list:
deg[u] = len(self.tadj_list[u])
myMinHeap.insert([u, deg[u]])
starttime = time.time()
while n_core != n:
x = myMinHeap.remove()
if x[1] > max_core:
max_core = x[1]
core_number[x[0]] = max_core
n_core += 1
if core_number[x[0]] in core_renumber:
core_renumber[core_number[x[0]]].add(x[0])
else:
core_renumber[core_number[x[0]]] = {x[0]}
for u in self.tadj_list[x[0]]:
if u not in core_number:
deg[u] = deg[u] - 1
myMinHeap.decrease_key(u, deg[u])
endtime = time.time()
# print("core_decomposition_time(s)" + str(endtime - starttime))
return core_number, core_renumber
def maintain_connected(self, temp, seed):
q, visited = [seed], {seed}
while q:
v = q.pop()
for u in self.tadj_list[v]:
if u in temp and u not in visited:
q.append(u)
visited.add(u)
return visited
def Compute_tppr(self, alpha, seed):
starttime = time.time()
tppr, D = {}, defaultdict(lambda: defaultdict(int))
e_out_seed = 0
for u in self.tadj_list[seed]:
e_out_seed += len(self.tadj_list[seed][u])
for (u, v, t) in self.edge_stream:
for t1 in D[u]:
if (v,t) in self.ttp[(u,t1)]:
D[v][t] += (1 - alpha) * D[u][t1] * self.ttp[(u, t1)][(v, t)]
if u == seed:
D[v][t] = D[v][t] + (alpha) / e_out_seed
for v in D:
tppr[v] = 0
for t in D[v]:
if (v, t) in self.dangling_state:
D[v][t] = D[v][t] / (alpha)
tppr[v] = tppr[v] + D[v][t]
endtime = time.time()
return tppr, endtime - starttime
def qtcs_baseline(self, alpha, seed, k):
starttime = time.time()
q = []
D = set()
deg = {}
for node_id in self.tadj_list:
deg[node_id] = len(self.tadj_list[node_id])
if deg[node_id] < k:
q.append(node_id)
while q:
v = q.pop()
D.add(v)
for w in self.tadj_list[v]:
if deg[w] >= k:
deg[w] = deg[w] - 1
if deg[w] < k:
q.append(w)
kcore = set(self.tadj_list.keys()) - D
if seed not in kcore:
print("noanswer")
return set(),0
temp = self.maintain_connected(kcore, seed)
tppr,time1 = self.Compute_tppr(alpha, seed)
mymin_heap = MinHeap([])
for u in temp:
mymin_heap.insert([u, tppr[u]])
D, best_indx = [], 0
while mymin_heap.heap:
u = mymin_heap.remove()[0]
if u == seed:
break
if deg[u] < k:
continue
q = [u]
while q:
u = q.pop()
D.append(u)
for w in self.tadj_list[u]:
if deg[w] >= k:
deg[w] = deg[w] - 1
if deg[w] < k:
q.append(w)
if w == seed:
q = []
mymin_heap = MinHeap([])
break
if mymin_heap.heap:
best_indx = len(D)
R = temp - set(D[:best_indx])
result = self.maintain_connected(R, seed)
endtime = time.time()
return result, endtime - starttime
def EGR(self, alpha, seed):
starttime = time.time()
tppr,time_tppr = self.Compute_tppr(alpha, seed)
rho = {}
mymin_heap = MinHeap([])
for u in self.tadj_list:
rho[u] = 0
for v in self.tadj_list[u]:
rho[u] = rho[u] + tppr[v]
mymin_heap.insert([u, rho[u]])
temp = set(self.tadj_list)
opt = (mymin_heap.peek())[1]
D, best_index = [], 0
while temp:
while (mymin_heap.peek())[1] <= opt:
u = mymin_heap.remove()[0]
temp.remove(u)
D.append(u)
if str(u) == str(seed):
temp = set()
break
for v in self.tadj_list[u]:
if v in temp:
rho[v] = rho[v] - tppr[u]
mymin_heap.decrease_key(v, rho[v])
if temp:
opt = (mymin_heap.peek())[1]
best_index = len(D)
R = set(self.tadj_list) - set(D[:best_index])
result = self.maintain_connected(R, seed)
endtime = time.time()
return result,time_tppr,endtime - starttime
def propagation(self,v,t,alpha,C):
if (v, t) not in self.dangling_state:
for (w, t1) in self.ttp[(v, t)]:
if (w, t1) not in self.r:
self.r[(w, t1)] = 0
self.r[(w, t1)] = self.r[(w, t1)] + (1 - alpha) * self.r[(v, t)] * self.ttp[(v, t)][(w, t1)]
if v not in self.tppr:
self.tppr[v] = 0
self.tppr[v] = self.tppr[v] + alpha * self.r[(v, t)]
#maintain some heap structures
if v in self.Q.heap_dict:
self.sum_Q += alpha * self.r[(v, t)]
if v in C:
for w in self.tadj_list[v]:
if w in C:
self.inter_rho[w] = self.inter_rho[w] + alpha * self.r[(v, t)]
self.inter_rho_min_heap.increase_key(w, self.inter_rho[w])
if w in self.Q.heap_dict:
self.Q_with_C[w] = self.Q_with_C[w] + alpha * self.r[(v, t)]
self.Q.increase_key(w, self.Q_with_C[w])
self.r_sum = self.r_sum - alpha * self.r[(v, t)]
# maintain some heap structures
self.r[(v, t)] = 0
if (v, t) in self.dangling_state:
if v not in self.tppr:
self.tppr[v] = 0
self.tppr[v] = self.tppr[v] + self.r[(v, t)]
#maintain some heap structures
if v in self.Q.heap_dict:
self.sum_Q += self.r[(v, t)]
if v in C:
for w in self.tadj_list[v]:
if w in C:
self.inter_rho[w] = self.inter_rho[w] +self.r[(v, t)]
self.inter_rho_min_heap.increase_key(w, self.inter_rho[w])
if w in self.Q.heap_dict:
self.Q_with_C[w] = self.Q_with_C[w] + self.r[(v, t)]
self.Q.increase_key(w, self.Q_with_C[w])
self.r_sum = self.r_sum - self.r[(v, t)]
# maintain some heap structures
self.r[(v, t)] = 0
def ALS(self, alpha, seed):
starttime = time.time()
self.r = {}
e_out_seed = 0
for v in self.tadj_list[seed]:
e_out_seed = e_out_seed + len(self.tadj_list[seed][v])
for v in self.tadj_list[seed]:
for t in self.tadj_list[seed][v]:
self.r[(v, t)] = 1 / e_out_seed
self.inter_rho, self.inter_rho_min_heap = {}, MinHeap([])
self.tppr = {}
self.Q = MaxHeap([])
self.Q.insert([seed, 0])
self.Q_with_C = {}
best, C, D = 0, set(), {seed}
self.r_sum = 1
unqualified = set()
self.sum_Q = 0
while self.Q.heap:
u = self.Q.remove()[0]
if u in self.tppr:
self.sum_Q -= self.tppr[u]
for v in self.tadj_list[u]:
for t in self.t_vertex[v]:
if (v, t) in self.r and self.r[(v, t)] >1 / self.number_t_vertex:
self.propagation(v,t,alpha,C)
#maintain some heap structures
self.inter_rho[u] = 0
for w in self.tadj_list[u]:
if w in C:
if w in self.tppr:
self.inter_rho[u] = self.inter_rho[u] + self.tppr[w]
if u in self.tppr:
self.inter_rho[w] = self.inter_rho[w] + self.tppr[u]
self.inter_rho_min_heap.increase_key(w, self.inter_rho[w])
if w in self.Q.heap_dict and u in self.tppr:
self.Q_with_C[w] = self.Q_with_C[w] + self.tppr[u]
self.Q.increase_key(w, self.Q_with_C[w])
self.inter_rho_min_heap.insert([u, self.inter_rho[u]])
# maintain some heap structures
C.add(u)
if self.inter_rho_min_heap.peek()[1] > best:
best = self.inter_rho_min_heap.peek()[1]
if self.r_sum<0: #self.r_sum may be negative because of the accuracy of the computer
self.r_sum=0
for v in self.tadj_list[u]:
if v not in D:
D.add(v)
xv = self.r_sum
for w in self.tadj_list[v]:
if w not in unqualified and w in self.tppr:
xv = xv + self.tppr[w]
if xv >= best:
#maintain some heap structures
if v not in self.tppr:
self.tppr[v] = 0
self.sum_Q += self.tppr[v]
self.Q_with_C[v] = 0
for w in self.tadj_list[v]:
if w in C and w in self.tppr:
self.Q_with_C[v] = self.Q_with_C[v] + self.tppr[w]
# maintain some heap structures
self.Q.insert([v, self.Q_with_C[v]])
else:
unqualified.add(v)
# min_inter_C = float('inf')
# for v in C:
# inter_C = 0
# for w in self.tadj_list[v]:
# if w in C:
# inter_C += self.tppr[w]
# if inter_C < min_inter_C:
# min_inter_C = inter_C
#
# if format(min_inter_C, ".6f") != format(self.inter_rho_min_heap.peek()[1], ".6f"):
# print(min_inter_C)
# print(self.inter_rho_min_heap.peek()[1])
# print("wrong.....................")
# Verify the correctness of the expanding algorithm and heap structure maintenance
if self.sum_Q + self.r_sum < best:
# print("Q prune is effective")
# print("Q(len)"+str(len(self.Q.heap_dict)))
for v in self.Q.heap_dict:
C.add(v)
break
endtime = time.time()
expanding_time= endtime - starttime
#Verify the correctness of the expanding algorithm and heap structure maintenance
# print("self.r_sum" + str(self.r_sum))
# print("rsum" + str(sum(self.r.values())))
# vaiable = sum(self.tppr.values())+ self.r_sum
# print("vaiable" + str(vaiable))
# sum1 = 0
# for u in self.Q.heap_dict:
# sum1 += self.tppr[u]
# if format(sum1, ".8f") != format(self.sum_Q, ".8f"):
# print("QQQQQQQQQQQQwrong")
# print(sum1)
# print(self.sum_Q)
starttime = time.time()
R, rho_hat, flag = C.copy(), {}, True
max_rho, min_rho = 0, float('inf')
for u in C:
rho_hat[u] = 0
if u not in self.tppr:
self.tppr[u] = 0
for v in self.tadj_list[u]:
if v in C and v in self.tppr:
rho_hat[u] += self.tppr[v]
if rho_hat[u] > max_rho:
max_rho = rho_hat[u]
if rho_hat[u] < min_rho and rho_hat[u] != 0:
min_rho = rho_hat[u]
temp = self.r_sum + max_rho
epsion = temp / min_rho
lambda_1 = epsion
while flag:
D, Q = set(), []
for u in R:
if epsion * rho_hat[u] <= temp:
Q.append(u)
if u == seed:
flag = False
Q = []
break
while Q:
u = Q.pop()
D.add(u)
for v in self.tadj_list[u]:
if v in R and v not in D:
rho_hat[v] = rho_hat[v] - self.tppr[u]
if epsion * rho_hat[v] <= temp:
Q.append(v)
if v == seed:
flag = False
Q = []
break
if flag:
lambda_1 = epsion
R = R - D
epsion = epsion / 2
result = self.maintain_connected(R, seed)
endtime = time.time()
reducing_time= endtime - starttime
return C,expanding_time,reducing_time,result,lambda_1
def metric(self,S):
temporal_edge_S=0
time_S=set()
for u in S:
for v in self.tadj_list[u]:
if v in S:
for t in self.tadj_list[u][v]:
time_S.add(t)
temporal_edge_S+=1
TD=temporal_edge_S/(len(S)*(len(S)-1)*len(time_S))
temporal_cut_S=0
temporal_vol_S=0
for u in S:
for v in self.tadj_list[u]:
if v not in S:
temporal_cut_S+=len(self.tadj_list[u][v])
for w in self.tadj_list[u]:
temporal_vol_S+=len(self.tadj_list[u][w])
if temporal_vol_S>len(self.edge_stream)-temporal_vol_S:
temporal_vol_S=len(self.edge_stream)-temporal_vol_S
if temporal_vol_S==0:
TC=1
else:
TC=temporal_cut_S/temporal_vol_S
return TD, TC
def t_vertex_sort(self): #temporal occurrence rank
number_t_vertex=[]
for u in self.tadj_list:
number_t_vertex.append((u,len(self.t_vertex[u])))
number_t_vertex.sort(key=lambda x:x[1])
sorted_vertex=[] #sort vertex by increasing len(self.t_vertex[u]))
for pair in number_t_vertex:
sorted_vertex.append(pair[0])
sorted_vertex_percent={}
step=len(self.tadj_list)/10
for i in range(1,11):
sorted_vertex_percent[i]=[]
for j in range(int((i-1)*step),int(i*step)):
sorted_vertex_percent[i].append(sorted_vertex[j])
return sorted_vertex_percent
def inter_min_rho(self,H,alpha,seed): #for testing precision,recall and F1
tppr,time_tppr = self.Compute_tppr(alpha, seed)
min_inter_rho_H=float('inf')
for u in H:
inter_H= 0
for v in self.tadj_list[u]:
if v in H:
inter_H += tppr[v]
if inter_H<min_inter_rho_H:
min_inter_rho_H=inter_H
return min_inter_rho_H
def temporal_subgraph(self, S): #for case study
interaction = {}
for u in S:
interaction[u] = {}
for v in self.tadj_list[u]:
if v in S:
interaction[u][v] = set()
for t in self.tadj_list[u][v]:
interaction[u][v].add(t)
return interaction
if __name__ == '__main__':
dataset = sys.argv[1]
G_qtcs = Graph(dataset)
alpha=0.2
number = 0
while number < 5:
seed = int(choice(list(G_qtcs.tadj_list)))
t_set=set()
for u in G_qtcs.tadj_list[seed]:
for t in G_qtcs.tadj_list[seed][u]:
t_set.add(t)
if len(t_set) < 3:
continue
number += 1
print("seed"+str(seed))
result,time_tppr,t_egr=G_qtcs.EGR(alpha, seed)
C,expanding_time,reducing_time,result_11,lambda_1=G_qtcs.ALS(alpha, seed)
for u in result: #verfied the correct of expanding stage
if u not in C:
print("wrong!!!!!!!!!!!!!!!!!!!!!!!!!")
print("time_tppr(s)"+str(time_tppr))
print("egr_time(s)"+str(t_egr))
print("time_expanding(s)"+str(expanding_time))
print("time_reducing(s)"+str(reducing_time))