-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathbmp_unsharpmask.m
194 lines (175 loc) · 6.17 KB
/
bmp_unsharpmask.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
function bmp_unsharpmask(Filename, lambda, ShowFigures);
%Blurs image, uses difference between blur and orignal for edges, creates image with enhanced edges
% Filename: name of bitmap [optional]
% BlurPixels: images will be smoothed with based on this FWHM
% ShowFigures: if FALSE results saved to disk, else displayed
%Example
% bmp_unsharpmask('photo.png');
% bmp_unsharpmask('cat.jpg',0.75,-0.5,false,'N95'); %non-linear, auto-bias
% bmp_unsharpmask('cat.jpg',0.75,-0.5,true,'L95'); %linear, auto-bias
if (nargin < 1)
[files,pth] = uigetfile({'*.bmp;*.jpg;*.png;*.tiff;';'*.*'},'Select the Image[s]', 'MultiSelect', 'on');
files = cellstr(files); %make cellstr regardless of whether user selects single or multiple images
else
[pth,nam, ext] = fileparts(Filename);
files = cellstr([nam, ext]);
end;
if (nargin < 2)
lambda = 1.0;
end;
if (nargin < 3)
ShowFigures = true;
end;
for i=1:size(files,2) %apply to image(s)
nam = strvcat(deblank(files(:,i)));
Inname = fullfile(pth, [nam]);
Im = Imread_mat2gray_sub(Inname);
ImOut = gradientfilt(Im);
ImOutS = unsharp(Im,ImOut,-lambda);
ImOutU = unsharp(Im,ImOut,lambda);
%size(ImOut)
if ~ShowFigures
imwrite(RGB_Grayscale_sub(Im),fullfile(pth, ['Original_' nam ]));
imwrite(RGB_Grayscale_sub(ImOut+0.5),fullfile(pth, ['Edge_' nam ]));
imwrite(RGB_Grayscale_sub(ImOutS),fullfile(pth, ['Smooth_' nam ]));
imwrite(RGB_Grayscale_sub(ImOutU),fullfile(pth, ['UnsharpMask_' nam ]));
end;
if ShowFigures %display histogram
figure;
set(gcf,'color','w');
subplot(2,2,1);
%Im = RGB_Grayscale_sub(Im);
%size( RGB_Grayscale_sub(Im))
image(RGB_Grayscale_sub(Im));
xlabel('Original');
set(gca,'XTick',[],'YTick',[]);
subplot(2,2,2);
image(RGB_Grayscale_sub(ImOut+0.5));
xlabel('Edges (High Frequencies)');
set(gca,'XTick',[],'YTick',[]);
subplot(2,2,3);
image(RGB_Grayscale_sub(ImOutS));
xlabel('Smooth (Low Frequencies)');
set(gca,'XTick',[],'YTick',[]);
subplot(2,2,4);
image(RGB_Grayscale_sub(ImOutU));
xlabel('Unsharp (Accentuate High Frequencies)');
set(gca,'XTick',[],'YTick',[]);
end;
end;
function imOut = unsharp(im, G, lambda)
% http://www.ee.columbia.edu/~madadam/4830/hw4/hw4-matlab.html#unsharp
% O = UNSHARP(IM,G,L) Unsharp masking
% Performs unsharp masking as follows:
% O = IM + L*G
% where G is the gradient performed by GRADIENTFILT(IM)
% O is returned normalized to (0,1)
%G = gradientfilt(im);
imOut = im + (lambda * G);
%imOut = imnorm(imOut);
imOut = imclip(imOut);
function im = imclip(im)
im(im>1) = 1;% Clip >1
im(im<0) = 0;% clip < 0
function imOut = imnorm(im)
%http://www.ee.columbia.edu/~madadam/4830/hw4/hw4-matlab.html#unsharp
% O = IMNORM(I) Image normalization
% imwrite doesnt seem to do any normalizing, so i do it here.
% normalizes to the range (0,1).
imOut = im;
% normalize
imMin = min(imOut(:));
if (imMin < 0)
imOut = imOut + abs(imMin);
end
imOut = imOut ./ max(imOut(:));
function Im=RGB_Grayscale_sub(I)
% This function transforms a grayscale image to RGB
%min(I(:))
%max(I(:))
Im(:,:,1)=I; Im(:,:,2)=I; Im(:,:,3)=I;
Im(Im>1) = 1;% Clip >1
Im(Im<0) = 0;% clip < 0
%img2RGB
function imOut = gradientfilt(im)
% B = GRADIENTFILT(A) Gradient filter.
% The gradient uses the discrete laplacian;
% 1/4 * [0 1 0
% 1 0 1
% 0 1 0]
% define discrete Laplacian for gradient operation.
L = (1/4).* [0 1 0;
1 0 1;
0 1 0];
[R,C] = size(im);
N = 3;
% pad near the edges with the symmetric extension
if mod(N,2)
padTL = (N-1)/2; % left and top
padBR = (N-1)/2; % bottom and right
else
padTL = N/2 - 1;
padBR = N/2;
end
offset = padTL;
paddedIm = zeros(R+N-1, C+N-1);
[padR,padC] = size(paddedIm);
% copy the main image
paddedImg((offset+1):(offset+R), (offset+1):(offset+C)) = im;
% now copy up into the symmetric extension - top, left, bottom, right
% what a pain - is there a simpler way?
paddedImg(1:padTL,(offset+1):(offset+C)) = flipud(im(1:padTL,:));
paddedImg((offset+1):(offset+R),1:padTL) = fliplr(im(:,1:padTL));
paddedImg((padR-padBR+1):padR,(offset+1):(offset+C)) = flipud(im((R-padBR+1):R,:));
paddedImg((offset+1):(offset+R),(padC-padBR+1):padC) = fliplr(im(:,(C-padBR+1):C));
% now the corners
paddedImg(1:padTL,1:padTL) = fliplr(flipud(im(1:padTL,1:padTL)));
paddedImg(1:padTL,(padC-padBR+1):padC) = fliplr(flipud(im(1:padTL,(C-padBR+1):C)));
paddedImg((padR-padBR+1):padR,(padC-padBR+1):padC) = fliplr(flipud(im((R-padBR+1):R,(C-padBR+1):C)));
paddedImg((padR-padBR+1):padR,1:padTL) = fliplr(flipud(im((R-padBR+1):R,1:padTL)));
%paddedImg % debug
% Now apply the gradient
%imOut = zeros(padR,padC);
imOut = zeros(R,C);
for i = (offset+1):(offset+R)
for j = (offset+1):(offset+C)
imOut(i-offset,j-offset) = paddedImg(i,j) - sum(sum(L .* paddedImg((i-padTL):(i+padBR),(j-padTL):(j+padBR))));
end
end
function [result] = Imread_mat2gray_sub(filename);
%this subfunction simulates
% result = mat2gray(double(imread(Inname)));
%without requiring the image processing toolbox
Im = (double(imread(filename)));
ImSize = size(Im);
if length(ImSize) == 2
n = 1; %only one layer - e.g. grayscale image
else
n = ImSize(3); %multiple layers, e.g. color image
end;
for layer = 1:n
%the following code replicates Matlab
% fit range so min..max is scaled to min/max..1
scale = 1/max(max(Im(:,:,layer)));
result(:,:,layer)= Im(:,:,layer).*scale;
%next lines normalize values
% so min..max are scaled to 0..1
%mn = min(min(Im(:,:,layer))); %minumum
%scale = 1/max(max(Im(:,:,layer))) - mn; % 1/range
%result(:,:,layer)= (Im(:,:,layer)-mn).*scale;
end;
if n > 1
[result,U,V]=YUV_RGB_sub(result);
end
%end Imread_mat2gray_sub
function [Y,U,V]=YUV_RGB_sub(Im)
% This program transform RGB layers to YUV layers....
% By Mohammed Mustafa Siddeq
% Date 25/7/2010
Im=double(Im);
R=Im(:,:,1); G=Im(:,:,2); B=Im(:,:,3);
% transfom layers to YUV
Y=((R+2*G+B)/4);
U=R-G;
V=B-G;
% end YUV_RGB_sub