-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathnii_diploe.m
174 lines (168 loc) · 6.99 KB
/
nii_diploe.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
function nii_diploe (T1, T2)
%Wide diploic space can disrupt segmentation-normalization
%This script darkens regions around brain based on T2 scan
% T1 : T1-weighted image with wide diploic space (marrow, cancellous bone)
% T2 : T2-weighted image
%Version
% Chris Rorden 20171109
%License
% This is a simple wrapper for SPM12, and carries the same license:
% GNU General Public Licence (either version 2, or at your option, any later version)
%Example
% nii_diploe('T1.nii', 'T2.nii');
% nii_diploe; %use GUI
if ~exist('T1','var') %no T1 specified
T1 = spm_select(1,'image','Select T1 scan');
end
if ~exist('T2','var') %no T2 specified
T2 = spm_select(1,'image','Select T2 scan');
end
%init batch system https://en.wikibooks.org/wiki/SPM/Batch
spm('defaults','fmri');
spm_jobman('initcfg');
%coregister/reslice T2 to match T1
T2 = coregEstWriteSub(T1, T2, []);
%segment T2 scan
normSegSub(T2, [], false); %segment T2 scan
%brain extract T2 based on T2
T2bet = extractSub(0.25, T2, prefixSub('c1',T2), prefixSub('c2',T2), prefixSub('c3',T2));
%make T1 where we darken regions outside the brain
maskT1 = maskSub(T1, T2bet, 0.25, true);
%Segment the masked T1 scan
%normSegSub(maskT1, T2, true); %<- This uses both the T1 and T2 scans
normSegSub(maskT1, [], true); %<- This uses only the T1 scan
%end nii_diploe()
function [T2, lesion] = coregEstWriteSub(T1, T2, lesion)
%coregister T2 to match T1 image, apply to lesion
if isempty(T1) || isempty(T2), return; end;
fprintf('Coregistering %s to match %s\n',T2,T1);
matlabbatch{1}.spm.spatial.coreg.estwrite.ref = {T1};
matlabbatch{1}.spm.spatial.coreg.estwrite.source = {T2};
matlabbatch{1}.spm.spatial.coreg.estwrite.other = {lesion};
matlabbatch{1}.spm.spatial.coreg.estwrite.eoptions.cost_fun = 'nmi';
matlabbatch{1}.spm.spatial.coreg.estwrite.eoptions.sep = [4 2];
matlabbatch{1}.spm.spatial.coreg.estwrite.eoptions.tol = [0.02 0.02 0.02 0.001 0.001 0.001 0.01 0.01 0.01 0.001 0.001 0.001];
matlabbatch{1}.spm.spatial.coreg.estwrite.eoptions.fwhm = [7 7];
matlabbatch{1}.spm.spatial.coreg.estwrite.roptions.interp = 1;
matlabbatch{1}.spm.spatial.coreg.estwrite.roptions.wrap = [0 0 0];
matlabbatch{1}.spm.spatial.coreg.estwrite.roptions.mask = 0;
matlabbatch{1}.spm.spatial.coreg.estwrite.roptions.prefix = 'r';
spm_jobman('run',matlabbatch);
T2 = prefixSub('r',T2);
if ~isempty(lesion), lesion = prefixSub('r',lesion); end;
%end coregEstSub()
function maskImgName = maskSub(imgName, maskName, modulation, rimMask)
%reduce voxels outside of mask by factor modulation
% imgName: image to mask
% mask: image with zeros in regions to be attenuated
% modulation : fraction of attenuation outside the mask
% rimMask : if true, only rim around bounary of mask will be attenuated
%Example
% maskSub('i.nii', 'msk.nii, 0.25, true); %decrease intensity outside mask to 25% input
%
hdr = spm_vol(maskName);
mask = spm_read_vols(hdr);
mask(mask ~= 0) = 1;
if rimMask
inmask = mask + 0;
spm_smooth(inmask, mask,4);
mask(mask > 0.05) = modulation;
mask(mask < modulation) = 1;
mask(inmask==1) = 1;
end;
hdr = spm_vol(imgName);
img = spm_read_vols(hdr);
if ~isequal(size(mask), size(img)), error('Images size mismatch %s %s', imgName, maskName); end;
img = img .* mask;
maskImgName = prefixSub('m',imgName);
hdr.fname = maskImgName;
%hdr.dt(1) =16;
spm_write_vol(hdr,img);
%end maskSub()
function t1Bet = extractSub(thresh, t1, c1, c2, c3)
%subroutine to extract brain from surrounding scalp
% t1: anatomical scan to be extracted
% c1: gray matter map
% c2: white matter map
% c3: [optional] spinal fluid map
fprintf('Brain extraction of %s\n', t1);
%[pth,nam,ext] = spm_fileparts(t1);
%load headers
mi = spm_vol(t1);%bias corrected T1
gi = spm_vol(c1);%Gray Matter map
wi = spm_vol(c2);%White Matter map
%load images
m = spm_read_vols(mi);
g = spm_read_vols(gi);
w = spm_read_vols(wi);
if nargin > 4 && ~isempty(c3)
ci = spm_vol(c3);%CSF map
c = spm_read_vols(ci);
w = c+w;
end;
w = g+w;
if thresh <= 0
m=m.*w;
else
mask= zeros(size(m));
mask(w >= thresh) = 255;
spm_smooth(mask,mask,1); %feather the edges
mask = mask / 255;
m=m.*mask;
end;
mi.fname = prefixSub('b',t1);
%mi.fname = fullfile(pth,['b', nam, ext]);
mi.dt(1) = 4; %16-bit precision more than sufficient uint8=2; int16=4; int32=8; float32=16; float64=64
spm_write_vol(mi,m);
t1Bet = mi.fname;
%end extractSub()
function normSegSub(img, img2, createDartel)
template = fullfile(spm('Dir'),'tpm','TPM.nii');
if ~exist(template,'file'), error('Unable to find template named %s',template); end
matlabbatch{1}.spm.spatial.preproc.channel(1).vols = {img};
matlabbatch{1}.spm.spatial.preproc.channel(1).biasreg = 0.001;
matlabbatch{1}.spm.spatial.preproc.channel(1).biasfwhm = 60;
matlabbatch{1}.spm.spatial.preproc.channel(1).write = [0 0];
if ~isempty(img2)
matlabbatch{1}.spm.spatial.preproc.channel(2).vols = {img2};
matlabbatch{1}.spm.spatial.preproc.channel(2).biasreg = 0.001;
matlabbatch{1}.spm.spatial.preproc.channel(2).biasfwhm = 60;
matlabbatch{1}.spm.spatial.preproc.channel(2).write = [0 0];
end
matlabbatch{1}.spm.spatial.preproc.tissue(1).tpm = {[template ',1']};
matlabbatch{1}.spm.spatial.preproc.tissue(1).ngaus = 1;
matlabbatch{1}.spm.spatial.preproc.tissue(1).native = [1 createDartel];
matlabbatch{1}.spm.spatial.preproc.tissue(1).warped = [0 0];
matlabbatch{1}.spm.spatial.preproc.tissue(2).tpm = {[template ',2']};
matlabbatch{1}.spm.spatial.preproc.tissue(2).ngaus = 1;
matlabbatch{1}.spm.spatial.preproc.tissue(2).native = [1 createDartel];
matlabbatch{1}.spm.spatial.preproc.tissue(2).warped = [0 0];
matlabbatch{1}.spm.spatial.preproc.tissue(3).tpm = {[template ',3']};
matlabbatch{1}.spm.spatial.preproc.tissue(3).ngaus = 2;
matlabbatch{1}.spm.spatial.preproc.tissue(3).native = [1 createDartel];
matlabbatch{1}.spm.spatial.preproc.tissue(3).warped = [0 0];
matlabbatch{1}.spm.spatial.preproc.tissue(4).tpm = {[template ',4']};
matlabbatch{1}.spm.spatial.preproc.tissue(4).ngaus = 3;
matlabbatch{1}.spm.spatial.preproc.tissue(4).native = [0 0];
matlabbatch{1}.spm.spatial.preproc.tissue(4).warped = [0 0];
matlabbatch{1}.spm.spatial.preproc.tissue(5).tpm = {[template ',5']};
matlabbatch{1}.spm.spatial.preproc.tissue(5).ngaus = 4;
matlabbatch{1}.spm.spatial.preproc.tissue(5).native = [0 0];
matlabbatch{1}.spm.spatial.preproc.tissue(5).warped = [0 0];
matlabbatch{1}.spm.spatial.preproc.tissue(6).tpm = {[template ',6']};
matlabbatch{1}.spm.spatial.preproc.tissue(6).ngaus = 2;
matlabbatch{1}.spm.spatial.preproc.tissue(6).native = [0 0];
matlabbatch{1}.spm.spatial.preproc.tissue(6).warped = [0 0];
matlabbatch{1}.spm.spatial.preproc.warp.mrf = 1;
matlabbatch{1}.spm.spatial.preproc.warp.cleanup = 2;
matlabbatch{1}.spm.spatial.preproc.warp.reg = [0 0.001 0.5 0.05 0.2];
matlabbatch{1}.spm.spatial.preproc.warp.affreg = 'mni';
matlabbatch{1}.spm.spatial.preproc.warp.fwhm = 0;
matlabbatch{1}.spm.spatial.preproc.warp.samp = 3;
matlabbatch{1}.spm.spatial.preproc.warp.write = [0 0];
spm_jobman('run',matlabbatch);
%end normSegSub()
function nam = prefixSub (pre, nam)
[p, n, x] = spm_fileparts(nam);
nam = fullfile(p, [pre, n, x]);
%end prefixSub()