Optimization for Machine Learning CS-439

Lecture 2: Gradient Descent

Martin Jaggi

EPFL – github.com/epfml/OptML_course

March 1, 2019

Chapter 2

Gradient Descent

The Algorithm

Get near to a minimum \mathbf{x}^{\star} / close to the optimal value $f(\mathbf{x}^{\star})$? (Assumptions: $f:\mathbb{R}^d\to\mathbb{R}$ convex, differentiable, has a global minimum $\mathbf{x}^{\star})$

Goal: Find $\mathbf{x} \in \mathbb{R}^d$ such that

$$
f(\mathbf{x}) - f(\mathbf{x}^*) \le \varepsilon.
$$

Note that there can be several minima $x_1^* \neq x_2^*$ with $f(x_1^*) = f(x_2^*)$.

Iterative Algorithm:

$$
\mathbf{x}_{t+1} := \mathbf{x}_t - \gamma \nabla f(\mathbf{x}_t),
$$

for timesteps $t = 0, 1, \ldots$, and stepsize $\gamma \geq 0$.

Example

Vanilla analysis

How to bound $f(\mathbf{x}_t) - f(\mathbf{x}^*)$?

 \blacktriangleright Abbreviate $\mathbf{g}_t:=\nabla f(\mathbf{x}_t)$, and consider (using the definition of gradient descent)

$$
\mathbf{g}_t^{\top}(\mathbf{x}_t - \mathbf{x}^{\star}) = \frac{1}{\gamma}(\mathbf{x}_t - \mathbf{x}_{t+1})^{\top}(\mathbf{x}_t - \mathbf{x}^{\star}).
$$

► Apply $2\mathbf{v}^\top\mathbf{w} = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 - \|\mathbf{v} - \mathbf{w}\|^2$ to rewrite

$$
\mathbf{g}_t^{\top}(\mathbf{x}_t - \mathbf{x}^{\star}) = \frac{1}{2\gamma} \left(\|\mathbf{x}_t - \mathbf{x}_{t+1}\|^2 + \|\mathbf{x}_t - \mathbf{x}^{\star}\|^2 - \|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^2 \right)
$$

$$
= \frac{\gamma}{2} \|\mathbf{g}_t\|^2 + \frac{1}{2\gamma} \left(\|\mathbf{x}_t - \mathbf{x}^{\star}\|^2 - \|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^2 \right)
$$

 \blacktriangleright Sum this up over the iterations t:

$$
\sum_{t=0}^{T-1} \mathbf{g}_t^{\top}(\mathbf{x}_t - \mathbf{x}^{\star}) = \frac{\gamma}{2} \sum_{t=0}^{T-1} ||\mathbf{g}_t||^2 + \frac{1}{2\gamma} (||\mathbf{x}_0 - \mathbf{x}^{\star}||^2 - ||\mathbf{x}_T - \mathbf{x}^{\star}||^2)
$$

EPFL Machine Learning and Optimization Laboratory 5/18

Vanilla analysis, II

Now we invoke convexity of f with $\mathbf{x} = \mathbf{x}_t, \mathbf{y} = \mathbf{x}^*$:

$$
f(\mathbf{x}_t) - f(\mathbf{x}^*) \leq \mathbf{g}_t^{\top}(\mathbf{x}_t - \mathbf{x}^*)
$$

$$
_{\rm giving}
$$

$$
\sum_{t=0}^{T-1} (f(\mathbf{x}_t) - f(\mathbf{x}^{\star})) \leq \frac{\gamma}{2} \sum_{t=0}^{T-1} ||\mathbf{g}_t||^2 + \frac{1}{2\gamma} ||\mathbf{x}_0 - \mathbf{x}^{\star}||^2,
$$

an upper bound for the average error $f(\mathbf{x}_t) - f(\mathbf{x}^\star)$ over the steps

- \blacktriangleright last iterate is not necessarily the best one
- \blacktriangleright stepsize is crucial

Lipschitz convex functions: $\mathcal{O}(1/\varepsilon^2)$ steps

Assume that all gradients of f are bounded in norm.

Equivalent to f being Lipschitz (Exercise 11).

Theorem

Let $f: \mathbb{R}^d \to \mathbb{R}$ be convex and differentiable with a global minimum \mathbf{x}^\star ; furthermore, suppose that $\|\mathbf{x}_0 - \mathbf{x}^\star\| \leq R$ and $\|\nabla f(\mathbf{x})\| \leq B$ for all \mathbf{x}_\cdot Choosing the stepsize

$$
\gamma:=\frac{R}{B\sqrt{T}},
$$

gradient descent yields

$$
\frac{1}{T}\sum_{t=0}^{T-1}f(\mathbf{x}_t)-f(\mathbf{x}^*)\leq \frac{RB}{\sqrt{T}}.
$$

Lipschitz convex functions: $\mathcal{O}(1/\varepsilon^2)$ steps, II Proof.

► Plug $\|\mathbf{x}_0 - \mathbf{x}^{\star}\| \leq R$ and $\|\mathbf{g}_t\| \leq B$ into Vanilla Analysis II:

$$
\sum_{t=0}^{T-1} (f(\mathbf{x}_t) - f(\mathbf{x}^*)) \leq \frac{\gamma}{2} \sum_{t=0}^{T-1} \|\mathbf{g}_t\|^2 + \frac{1}{2\gamma} \|\mathbf{x}_0 - \mathbf{x}^*\|^2 \leq \frac{\gamma}{2} B^2 T + \frac{1}{2\gamma} R^2.
$$

 \blacktriangleright choose γ such that

$$
q(\gamma) = \frac{\gamma}{2}B^2T + \frac{R^2}{2\gamma}
$$

is minimized.

- Solving $q'(\gamma) = 0$ yields the minimum $\gamma = \frac{R}{R\gamma}$ $\frac{R}{B\sqrt{T}}$, and $q(R/(B$ $\sqrt{T})$ = $RB\sqrt{T}$.
- \blacktriangleright Dividing by T, the result follows.

H

Lipschitz convex functions: $\mathcal{O}(1/\varepsilon^2)$ steps, III

$$
T \geq \frac{R^2 B^2}{\varepsilon^2} \quad \Rightarrow \quad \text{average error } \leq \frac{R B}{\sqrt{T}} \leq \varepsilon.
$$

Advantages:

- \blacktriangleright dimension-independent!
- \blacktriangleright holds for both average, or best iterate

In Practice:

What if we don't know R and B ?

\rightarrow Exercise 13

Smooth functions

"Not too curved"

Definition

Let $f: \mathbb{R}^d \to \mathbb{R}$ be convex and differentiable. f is called smooth (with parameter $L \geq 0$) if

$$
f(\mathbf{y}) \le f(\mathbf{x}) + \nabla f(\mathbf{x})^\top (\mathbf{y} - \mathbf{x}) + \frac{L}{2} ||\mathbf{x} - \mathbf{y}||^2, \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^d.
$$

Definition does not require convexity (useful later)

Smooth functions: $\mathcal{O}(1/\varepsilon)$ steps

Smoothness: For any x, the graph of f is below a not-too-steep tangential paraboloid at $(\mathbf{x}, f(\mathbf{x}))$:

EPFL Machine Learning and Optimization Laboratory 11/18

Smooth functions: $\mathcal{O}(1/\varepsilon)$ steps

- \triangleright Quadratic functions are smooth (Exercise 11)
- \triangleright Operations that preserve smoothness:

Lemma (Exercise 14)

- (i) Let f_1, f_2, \ldots, f_m be convex functions that are smooth with parameters L_1, L_2, \ldots, L_m , and let $\lambda_1, \lambda_2, \ldots, \lambda_m \in \mathbb{R}_+$. Then the convex function $f := \sum_{i=1}^m \lambda_i f_i$ is smooth with parameter $\sum_{i=1}^m \lambda_i L_i.$
- (ii) Let f be convex and smooth with parameter L, and let $q(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$, for $A \in \mathbb{R}^{d \times m}$ and $\mathbf{b} \in \mathbb{R}^{d}$. Then the convex function $f \circ g$ is smooth with parameter $L\|A\|^2$, where $||A-F||$

$$
||A|| = \max_{\mathbf{x} \neq 0} \frac{||A\mathbf{x}||}{||\mathbf{x}||}
$$

is the 2-norm (or spectral norm) of A .

Smooth vs Lipschitz

- ► Bounded gradients \Leftrightarrow Lipschitz continuity of f
- ► Smoothness \Leftrightarrow Lipschitz continuity of ∇f (in the convex case).

Lemma

Let $f: \mathbb{R}^d \to \mathbb{R}$ be convex and differentiable. The following two statements are equivalent.

\n- (i)
$$
f
$$
 is smooth with parameter L .
\n- (ii) $\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\| \leq L \|\mathbf{x} - \mathbf{y}\|$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$.
\n

Proof in lecture slides of L. Vandenberghe, <http://www.seas.ucla.edu/~vandenbe/236C/lectures/gradient.pdf>.

Sufficient decrease

Lemma

Let $f: \mathbb{R}^d \to \mathbb{R}$ be differentiable and smooth with parameter L. With

$$
\gamma:=\frac{1}{L},
$$

gradient descent satisfies

$$
f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_t) - \frac{1}{2L} \|\nabla f(\mathbf{x}_t)\|^2, \quad t \ge 0.
$$

Note: More specifically, this already holds if f is smooth with parameter L over the line segment connecting x_t and x_{t+1} .

Smooth convex functions: $\mathcal{O}(1/\varepsilon)$ steps

Theorem

Let $f: \mathbb{R}^d \to \mathbb{R}$ be convex and differentiable with a global minimum \mathbf{x}^\star ; furthermore, suppose that f is smooth with parameter L . Choosing stepsize

$$
\gamma:=\frac{1}{L},
$$

gradient descent yields

$$
f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{L}{2T} ||\mathbf{x}_0 - \mathbf{x}^*||^2, \quad T > 0.
$$

Smooth convex functions: $\mathcal{O}(1/\varepsilon)$ steps II

$$
f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{L}{2T} \|\mathbf{x}_0 - \mathbf{x}^*\|^2, \quad T > 0.
$$

Proof.

Vanilla Analysis II:

$$
\sum_{t=0}^{T-1} (f(\mathbf{x}_t) - f(\mathbf{x}^{\star})) \leq \frac{\gamma}{2} \sum_{t=0}^{T-1} \|\nabla f(\mathbf{x}_t)\|^2 + \frac{1}{2\gamma} \|\mathbf{x}_0 - \mathbf{x}^{\star}\|^2.
$$

This time, we can bound the squared gradients by sufficient decrease:

$$
\frac{1}{2L}\sum_{t=0}^{T-1} \|\nabla f(\mathbf{x}_t)\|^2 \leq \sum_{t=0}^{T-1} (f(\mathbf{x}_t) - f(\mathbf{x}_{t+1})) = f(\mathbf{x}_0) - f(\mathbf{x}_T).
$$

Smooth convex functions: $\mathcal{O}(1/\varepsilon)$ steps III

Putting it together with $\gamma = 1/L$:

$$
\sum_{t=0}^{T-1} (f(\mathbf{x}_t) - f(\mathbf{x}^*)) \leq \frac{1}{2L} \sum_{t=0}^{T-1} \|\nabla f(\mathbf{x}_t)\|^2 + \frac{L}{2} \|\mathbf{x}_0 - \mathbf{x}^*\|^2
$$

$$
\leq f(\mathbf{x}_0) - f(\mathbf{x}_T) + \frac{L}{2} \|\mathbf{x}_0 - \mathbf{x}^*\|^2.
$$

Rewriting:

$$
\sum_{t=1}^T \left(f(\mathbf{x}_t) - f(\mathbf{x}^*) \right) \leq \frac{L}{2} ||\mathbf{x}_0 - \mathbf{x}^*||^2.
$$

As last iterate is the best (sufficient decrease!):

$$
f(\mathbf{x}_T) - f(\mathbf{x}^*) \leq \frac{1}{T} \left(\sum_{t=1}^T \left(f(\mathbf{x}_t) - f(\mathbf{x}^*) \right) \right) \leq \frac{L}{2T} ||\mathbf{x}_0 - \mathbf{x}^*||^2.
$$

EPFL Machine Learning and Optimization Laboratory 17/18

Smooth convex functions: $\mathcal{O}(1/\varepsilon)$ steps IV

$$
R^2 := \|\mathbf{x}_0 - \mathbf{x}^{\star}\|^2.
$$

$$
T \geq \frac{R^2 L}{2\varepsilon} \quad \Rightarrow \quad \text{ error } \leq \frac{L}{2T} R^2 \leq \varepsilon.
$$

 \triangleright 50 · R^2L iterations for error 0.01

 \blacktriangleright ... as opposed to $10,000 \cdot R^2B^2$ in the Lipschitz case

In Practice:

What if we don't know the smoothness parameter L ?

\rightarrow Exercise 15