-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmodel_davenet.py
97 lines (87 loc) · 3.86 KB
/
model_davenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import math
import torch.nn as nn
import numpy as np
def conv1x9(in_planes, out_planes, stride=1):
"""1x9 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=(1,9), stride=stride, padding=(0,4), bias=False)
def conv1d(in_planes, out_planes, width=9, stride=1, bias=False):
"""1xd convolution with padding"""
if width % 2 == 0:
pad_amt = int(width / 2)
else:
pad_amt = int((width - 1) / 2)
return nn.Conv2d(in_planes, out_planes, kernel_size=(1,width), stride=stride, padding=(0,pad_amt), bias=bias)
class SpeechBasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, width=9, stride=1, downsample=None):
super(SpeechBasicBlock, self).__init__()
self.conv1 = conv1d(inplanes, planes, width=width, stride=stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv1d(planes, planes, width=width)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResDavenet(nn.Module):
def __init__(self, feat_dim=40, block=SpeechBasicBlock, layers=[2, 2, 2, 2], layer_widths=[128, 128, 256, 512, 1024], convsize=9):
super(ResDavenet, self).__init__()
self.feat_dim = feat_dim
self.inplanes = layer_widths[0]
self.batchnorm1 = nn.BatchNorm2d(1)
self.conv1 = nn.Conv2d(1, self.inplanes, kernel_size=(self.feat_dim,1), stride=1, padding=(0,0), bias=False)
self.bn1 = nn.BatchNorm2d(self.inplanes)
self.relu = nn.ReLU(inplace=True)
self.layer1 = self._make_layer(block, layer_widths[1], layers[0], width=convsize, stride=2)
self.layer2 = self._make_layer(block, layer_widths[2], layers[1], width=convsize, stride=2)
self.layer3 = self._make_layer(block, layer_widths[3], layers[2], width=convsize, stride=2)
self.layer4 = self._make_layer(block, layer_widths[4], layers[3], width=convsize, stride=2)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, width=9, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, width=width, stride=stride, downsample=downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes, width=width, stride=1))
return nn.Sequential(*layers)
def forward(self, x):
if x.dim() == 3:
x = x.unsqueeze(1)
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = x.squeeze(2)
return x
def load_DAVEnet():
layer_widths = [128,128,256,512,1024]
layer_depths = [2,2,2,2]
audio_model = ResDavenet(feat_dim=40, layers=layer_depths, convsize=9, layer_widths=layer_widths)
return audio_model