forked from microsoft/StemGNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhandler.py
207 lines (184 loc) · 9.3 KB
/
handler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import json
from datetime import datetime
from data_loader.forecast_dataloader import ForecastDataset, de_normalized
from models.base_model import Model
import torch
import torch.nn as nn
import torch.utils.data as torch_data
import numpy as np
import time
import os
from utils.math_utils import evaluate
def save_model(model, model_dir, epoch=None):
if model_dir is None:
return
if not os.path.exists(model_dir):
os.makedirs(model_dir)
epoch = str(epoch) if epoch else ''
file_name = os.path.join(model_dir, epoch + '_stemgnn.pt')
with open(file_name, 'wb') as f:
torch.save(model, f)
def load_model(model_dir, epoch=None):
if not model_dir:
return
epoch = str(epoch) if epoch else ''
file_name = os.path.join(model_dir, epoch + '_stemgnn.pt')
if not os.path.exists(model_dir):
os.makedirs(model_dir)
if not os.path.exists(file_name):
return
with open(file_name, 'rb') as f:
model = torch.load(f)
return model
def inference(model, dataloader, device, node_cnt, window_size, horizon):
forecast_set = []
target_set = []
model.eval()
with torch.no_grad():
for i, (inputs, target) in enumerate(dataloader):
inputs = inputs.to(device)
target = target.to(device)
step = 0
forecast_steps = np.zeros([inputs.size()[0], horizon, node_cnt], dtype=np.float)
while step < horizon:
forecast_result, a = model(inputs)
len_model_output = forecast_result.size()[1]
if len_model_output == 0:
raise Exception('Get blank inference result')
inputs[:, :window_size - len_model_output, :] = inputs[:, len_model_output:window_size,
:].clone()
inputs[:, window_size - len_model_output:, :] = forecast_result.clone()
forecast_steps[:, step:min(horizon - step, len_model_output) + step, :] = \
forecast_result[:, :min(horizon - step, len_model_output), :].detach().cpu().numpy()
step += min(horizon - step, len_model_output)
forecast_set.append(forecast_steps)
target_set.append(target.detach().cpu().numpy())
return np.concatenate(forecast_set, axis=0), np.concatenate(target_set, axis=0)
def validate(model, dataloader, device, normalize_method, statistic,
node_cnt, window_size, horizon,
result_file=None):
start = datetime.now()
forecast_norm, target_norm = inference(model, dataloader, device,
node_cnt, window_size, horizon)
if normalize_method and statistic:
forecast = de_normalized(forecast_norm, normalize_method, statistic)
target = de_normalized(target_norm, normalize_method, statistic)
else:
forecast, target = forecast_norm, target_norm
score = evaluate(target, forecast)
score_by_node = evaluate(target, forecast, by_node=True)
end = datetime.now()
score_norm = evaluate(target_norm, forecast_norm)
print(f'NORM: MAPE {score_norm[0]:7.9%}; MAE {score_norm[1]:7.9f}; RMSE {score_norm[2]:7.9f}.')
print(f'RAW : MAPE {score[0]:7.9%}; MAE {score[1]:7.9f}; RMSE {score[2]:7.9f}.')
if result_file:
if not os.path.exists(result_file):
os.makedirs(result_file)
step_to_print = 0
forcasting_2d = forecast[:, step_to_print, :]
forcasting_2d_target = target[:, step_to_print, :]
np.savetxt(f'{result_file}/target.csv', forcasting_2d_target, delimiter=",")
np.savetxt(f'{result_file}/predict.csv', forcasting_2d, delimiter=",")
np.savetxt(f'{result_file}/predict_abs_error.csv',
np.abs(forcasting_2d - forcasting_2d_target), delimiter=",")
np.savetxt(f'{result_file}/predict_ape.csv',
np.abs((forcasting_2d - forcasting_2d_target) / forcasting_2d_target), delimiter=",")
return dict(mae=score[1], mae_node=score_by_node[1], mape=score[0], mape_node=score_by_node[0],
rmse=score[2], rmse_node=score_by_node[2])
def train(train_data, valid_data, args, result_file):
node_cnt = train_data.shape[1]
model = Model(node_cnt, 2, args.window_size, args.multi_layer, horizon=args.horizon)
model.to(args.device)
if len(train_data) == 0:
raise Exception('Cannot organize enough training data')
if len(valid_data) == 0:
raise Exception('Cannot organize enough validation data')
if args.norm_method == 'z_score':
train_mean = np.mean(train_data, axis=0)
train_std = np.std(train_data, axis=0)
normalize_statistic = {"mean": train_mean.tolist(), "std": train_std.tolist()}
elif args.norm_method == 'min_max':
train_min = np.min(train_data, axis=0)
train_max = np.max(train_data, axis=0)
normalize_statistic = {"min": train_min.tolist(), "max": train_max.tolist()}
else:
normalize_statistic = None
if normalize_statistic is not None:
with open(os.path.join(result_file, 'norm_stat.json'), 'w') as f:
json.dump(normalize_statistic, f)
if args.optimizer == 'RMSProp':
my_optim = torch.optim.RMSprop(params=model.parameters(), lr=args.lr, eps=1e-08)
else:
my_optim = torch.optim.Adam(params=model.parameters(), lr=args.lr, betas=(0.9, 0.999))
my_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer=my_optim, gamma=args.decay_rate)
train_set = ForecastDataset(train_data, window_size=args.window_size, horizon=args.horizon,
normalize_method=args.norm_method, norm_statistic=normalize_statistic)
valid_set = ForecastDataset(valid_data, window_size=args.window_size, horizon=args.horizon,
normalize_method=args.norm_method, norm_statistic=normalize_statistic)
train_loader = torch_data.DataLoader(train_set, batch_size=args.batch_size, drop_last=False, shuffle=True,
num_workers=0)
valid_loader = torch_data.DataLoader(valid_set, batch_size=args.batch_size, shuffle=False, num_workers=0)
forecast_loss = nn.MSELoss(reduction='mean').to(args.device)
total_params = 0
for name, parameter in model.named_parameters():
if not parameter.requires_grad: continue
param = parameter.numel()
total_params += param
print(f"Total Trainable Params: {total_params}")
best_validate_mae = np.inf
validate_score_non_decrease_count = 0
performance_metrics = {}
for epoch in range(args.epoch):
epoch_start_time = time.time()
model.train()
loss_total = 0
cnt = 0
for i, (inputs, target) in enumerate(train_loader):
inputs = inputs.to(args.device)
target = target.to(args.device)
model.zero_grad()
forecast, _ = model(inputs)
loss = forecast_loss(forecast, target)
cnt += 1
loss.backward()
my_optim.step()
loss_total += float(loss)
print('| end of epoch {:3d} | time: {:5.2f}s | train_total_loss {:5.4f}'.format(epoch, (
time.time() - epoch_start_time), loss_total / cnt))
save_model(model, result_file, epoch)
if (epoch+1) % args.exponential_decay_step == 0:
my_lr_scheduler.step()
if (epoch + 1) % args.validate_freq == 0:
is_best_for_now = False
print('------ validate on data: VALIDATE ------')
performance_metrics = \
validate(model, valid_loader, args.device, args.norm_method, normalize_statistic,
node_cnt, args.window_size, args.horizon,
result_file=result_file)
if best_validate_mae > performance_metrics['mae']:
best_validate_mae = performance_metrics['mae']
is_best_for_now = True
validate_score_non_decrease_count = 0
else:
validate_score_non_decrease_count += 1
# save model
if is_best_for_now:
save_model(model, result_file)
# early stop
if args.early_stop and validate_score_non_decrease_count >= args.early_stop_step:
break
return performance_metrics, normalize_statistic
def test(test_data, args, result_train_file, result_test_file):
with open(os.path.join(result_train_file, 'norm_stat.json'),'r') as f:
normalize_statistic = json.load(f)
model = load_model(result_train_file)
node_cnt = test_data.shape[1]
test_set = ForecastDataset(test_data, window_size=args.window_size, horizon=args.horizon,
normalize_method=args.norm_method, norm_statistic=normalize_statistic)
test_loader = torch_data.DataLoader(test_set, batch_size=args.batch_size, drop_last=False,
shuffle=False, num_workers=0)
performance_metrics = validate(model, test_loader, args.device, args.norm_method, normalize_statistic,
node_cnt, args.window_size, args.horizon,
result_file=result_test_file)
mae, mape, rmse = performance_metrics['mae'], performance_metrics['mape'], performance_metrics['rmse']
print('Performance on test set: MAPE: {:5.2f} | MAE: {:5.2f} | RMSE: {:5.4f}'.format(mape, mae, rmse))