-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathinfer.py
227 lines (193 loc) · 8.33 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import argparse
import ast
import itertools
import functools
import json
import os
import sys
import _jsonnet
import asdl
import astor
import torch
import tqdm
import multiprocessing
from seq2struct import beam_search
from seq2struct import datasets
from seq2struct import models
from seq2struct import optimizers
from seq2struct.utils import registry
from seq2struct.utils import saver as saver_mod
from seq2struct.utils import parallelizer
def maybe_slice(iterable, start, end):
if start is not None or end is not None:
iterable = itertools.islice(iterable, start, end)
return iterable
class Inferer:
def __init__(self, config):
self.config = config
if torch.cuda.is_available():
self.device = torch.device('cuda')
else:
self.device = torch.device('cpu')
torch.set_num_threads(1)
# 0. Construct preprocessors
self.model_preproc = registry.instantiate(
registry.lookup('model', config['model']).Preproc,
config['model'])
self.model_preproc.load()
def load_model(self, logdir, step):
'''Load a model (identified by the config used for construction) and return it'''
# 1. Construct model
model = registry.construct('model', self.config['model'], preproc=self.model_preproc, device=self.device)
model.to(self.device)
model.eval()
model.visualize_flag = False
optimizer = registry.construct('optimizer', self.config['optimizer'], params=model.parameters())
# 2. Restore its parameters
saver = saver_mod.Saver(model, optimizer)
last_step = saver.restore(logdir, step=step, map_location=self.device)
if not last_step:
raise Exception('Attempting to infer on untrained model')
return model
def infer(self, model, output_path, args):
# 3. Get training data somewhere
output = open(output_path, 'w')
orig_data = registry.construct('dataset', self.config['data'][args.section])
sliced_orig_data = maybe_slice(orig_data, args.start_offset, args.limit)
preproc_data = self.model_preproc.dataset(args.section)
sliced_preproc_data = maybe_slice(preproc_data, args.start_offset, args.limit)
with torch.no_grad():
if args.mode == 'infer':
assert len(orig_data) == len(preproc_data)
self._inner_infer(model, args.beam_size, args.output_history, sliced_orig_data, sliced_preproc_data, output, args.nproc)
elif args.mode == 'debug':
self._debug(model, sliced_orig_data, output)
elif args.mode == 'visualize_attention':
model.visualize_flag = True
model.decoder.visualize_flag = True
self._visualize_attention(model, args.beam_size, args.output_history, sliced_orig_data, args.res1, args.res2, args.res3, output)
def _inner_infer(self, model, beam_size, output_history, sliced_orig_data, sliced_preproc_data, output, nproc):
list_items = [(idx, oi, pi) for idx, (oi, pi) in enumerate(zip(sliced_orig_data, sliced_preproc_data))]
cp = parallelizer.CPUParallelizer(nproc)
params = [
(beam_size, output_history, indices, orig_items, preproc_items)
for indices, orig_items, preproc_items in list_items
]
write_all(output, cp.parallel_map([(functools.partial(self._infer_single, model), params)]))
def _infer_single(self, model, param):
beam_size, output_history, index, orig_item, preproc_item = param
try:
beams = beam_search.beam_search(
model, orig_item, preproc_item, beam_size=beam_size, max_steps=1000)
decoded = []
for beam in beams:
model_output, inferred_code = beam.inference_state.finalize()
decoded.append({
'model_output': model_output,
'inferred_code': inferred_code,
'score': beam.score,
**({
'choice_history': beam.choice_history,
'score_history': beam.score_history,
} if output_history else {})})
result = {
'index': index,
'beams': decoded,
}
except Exception as e:
result = {
'index': index,
'error': str(e),
}
return json.dumps(result) + '\n'
def _debug(self, model, sliced_data, output):
for i, item in enumerate(tqdm.tqdm(sliced_data)):
(_, history), = model.compute_loss([item], debug=True)
output.write(
json.dumps({
'index': i,
'history': history,
}) + '\n')
output.flush()
def _visualize_attention(self, model, beam_size, output_history, sliced_data, res1file, res2file, res3file, output):
res1 = json.load(open(res1file, 'r'))
res1 = res1['per_item']
res2 = json.load(open(res2file, 'r'))
res2 = res2['per_item']
res3 = json.load(open(res3file, 'r'))
res3 = res3['per_item']
interest_cnt = 0
cnt = 0
for i, item in enumerate(tqdm.tqdm(sliced_data)):
if res1[i]['hardness'] != 'extra':
continue
cnt += 1
if (res1[i]['exact'] == 0) and (res2[i]['exact'] == 0) and (res3[i]['exact'] == 0):
continue
interest_cnt += 1
'''
print('sample index: ')
print(i)
beams = beam_search.beam_search(
model, item, beam_size=beam_size, max_steps=1000, visualize_flag=True)
entry = item.orig
print('ground truth SQL:')
print(entry['query_toks'])
print('prediction:')
print(res2[i])
decoded = []
for beam in beams:
model_output, inferred_code = beam.inference_state.finalize()
decoded.append({
'model_output': model_output,
'inferred_code': inferred_code,
'score': beam.score,
**({
'choice_history': beam.choice_history,
'score_history': beam.score_history,
} if output_history else {})})
output.write(
json.dumps({
'index': i,
'beams': decoded,
}) + '\n')
output.flush()
'''
print(interest_cnt * 1.0 / cnt)
def write_all(output, genexp):
for item in genexp:
output.write(item)
output.flush()
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--logdir', required=True)
parser.add_argument('--config', required=True)
parser.add_argument('--config-args')
parser.add_argument('--step', type=int)
parser.add_argument('--section', required=True)
parser.add_argument('--output', required=True)
parser.add_argument('--beam-size', required=True, type=int)
parser.add_argument('--output-history', action='store_true')
parser.add_argument('--start-offset', type=int)
parser.add_argument('--limit', type=int)
parser.add_argument('--mode', default='infer', choices=['infer', 'debug', 'visualize_attention'])
parser.add_argument('--res1', default='outputs/glove-sup-att-1h-0/outputs.json')
parser.add_argument('--res2', default='outputs/glove-sup-att-1h-1/outputs.json')
parser.add_argument('--res3', default='outputs/glove-sup-att-1h-2/outputs.json')
parser.add_argument('--nproc', type=int, default=1)
args = parser.parse_args()
if args.config_args:
config = json.loads(_jsonnet.evaluate_file(args.config, tla_codes={'args': args.config_args}))
else:
config = json.loads(_jsonnet.evaluate_file(args.config))
if 'model_name' in config:
args.logdir = os.path.join(args.logdir, config['model_name'])
output_path = args.output.replace('__LOGDIR__', args.logdir)
if os.path.exists(output_path):
print('Output file {} already exists'.format(output_path))
sys.exit(1)
inferer = Inferer(config)
model = inferer.load_model(args.logdir, args.step)
inferer.infer(model, output_path, args)
if __name__ == '__main__':
main()