This repository has been archived by the owner on Feb 9, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 170
/
Copy pathvega.R
220 lines (186 loc) · 5.68 KB
/
vega.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
#' Coerce an ggvis object to a vega list.
#'
#' This generic function powers the coercion of ggvis objects to vega
#' compatible data structures.
#'
#' @param x an object to convert to vega
#' @return a list. When converted to JSON, will be the type of structure
#' that vega expects.
#' @keywords internal
as.vega <- function(x, ...) {
UseMethod("as.vega", x)
}
#' @method as.vega ggvis
#' @export
#' @rdname as.vega
#' @param session a session object from shiny
#' @param dynamic whether to generate dynamic or static spec
as.vega.ggvis <- function(x, session = NULL, dynamic = FALSE, ...) {
# Any changes to default should happen at top-level
x$cur_vis <- NULL
if (length(x$marks) == 0) {
x <- layer_guess(x)
}
data_props <- combine_data_props(x$marks)
data_ids <- names(data_props)
data_table <- x$data[data_ids]
# Collapse each list of scale objects into one scale object.
x <- collapse_scales(x)
scale_data_table <- scale_domain_data(x)
# Wrap each of the reactive data objects in another reactive which returns
# only the columns that are actually used, and adds any calculated columns
# that are used in the props.
data_table <- active_props(data_table, data_props)
# From an environment containing data_table objects, get static data for the
# specified ids.
static_datasets <- function(data_table, ids) {
datasets <- lapply(ids, function(id) {
data <- shiny::isolate(data_table[[id]]())
as.vega(data, id)
})
unlist(datasets, recursive = FALSE)
}
datasets <- static_datasets(data_table, data_ids)
scale_datasets <- static_datasets(scale_data_table, names(scale_data_table))
check_scales_complete(x)
# Each of these operations results in a more completely specified (and still
# valid) ggvis object
x <- add_missing_axes(x)
x <- apply_axes_defaults(x)
x <- add_missing_legends(x)
x <- fortify_legends(x)
x <- apply_legends_defaults(x)
x <- add_default_options(x)
spec <- list(
data = c(datasets, scale_datasets),
scales = lapply(unname(x$scales), as.vega),
marks = lapply(x$marks, as.vega),
width = x$options$width,
height = x$options$height,
legends = compact(lapply(x$legends, as.vega)),
axes = compact(lapply(x$axes, as.vega)),
padding = as.vega(x$options$padding),
ggvis_opts = x$options,
handlers = if (dynamic) x$handlers
)
structure(
spec,
data_table = data_table,
scale_data_table = scale_data_table,
controls = x$controls,
connectors = x$connectors
)
}
gather_scales <- function(x) {
groups <- Filter(is.mark_group, x$marks)
c(x$scales, unlist(pluck(groups, "scales"), recursive = FALSE))
}
#' @export
as.vega.mark_group <- function(x, ...) {
this_scales <- vpluck(x$scales, "name", character(1))
list(
type = "group",
properties = as.vega(x$props),
from = list(data = data_id(x$data)),
marks = lapply(x$marks, as.vega, in_group = TRUE),
scales = lapply(unname(x$scales), as.vega),
legends = lapply(x$legends, as.vega),
axes = lapply(x$axes, as.vega)
)
}
# Given a ggvis mark object, output a vega mark object
#' @export
as.vega.mark <- function(mark, in_group = FALSE) {
data_id <- data_id(mark$data)
# Pull out key from props, if present
key <- mark$props$key
mark$props$key <- NULL
# Add the custom ggvis properties set for storing ggvis-specific information
# in the Vega spec.
properties <- as.vega(mark$props)
properties$ggvis <- list()
properties$ggvis$data <- list(value = data_id)
group_vars <- dplyr::groups(shiny::isolate(mark$data()))
if (!in_group && !is.null(group_vars)) {
# FIXME: probably should go away and just use subvis
# String representation of groups
group_vars <- vapply(group_vars, deparse, character(1))
m <- list(
type = "group",
from = list(data = data_id),
marks = list(
list(
type = mark$type,
properties = properties
)
)
)
} else {
m <- list(
type = mark$type,
properties = properties
)
if (!in_group) {
# If mark inside group, inherits data from parent.
m$from <- list(data = data_id)
}
}
if (!is.null(key)) {
m$key <- paste0("data.", safe_vega_var(prop_label(key)))
}
m
}
#' @export
as.vega.ggvis_props <- function(x, default_scales = NULL) {
x <- prop_event_sets(x)
# Given a list of property sets (enter, update, etc.), return appropriate
# vega property set.
vega_prop_set <- function(x) {
if (empty(x)) return(NULL)
props <- trim_prop_event(names(x))
default_scales <- default_scales %||% propname_to_scale(props)
Map(prop_vega, x, default_scales)
}
lapply(x, vega_prop_set)
}
#' @export
as.vega.ggvis_axis <- function(x) {
if (isTRUE(x$hide)) return(NULL)
if (empty(x$properties)) {
x$properties <- NULL
} else {
x$properties <- as.vega(x$properties)
}
unclass(x)
}
#' @export
as.vega.ggvis_legend <- as.vega.ggvis_axis
#' @export
as.vega.data.frame <- function(x, name, ...) {
# Figure out correct vega parsers for non-string columns
parsers <- drop_nulls(lapply(x, vega_data_parser))
list(list(
name = name,
format = list(
type = "csv",
parse = parsers
),
values = to_csv(x)
))
}
#' @export
as.vega.grouped_df <- function(x, name, ...) {
# Create a flat data set and add a transform-facet data set which uses the
# flat data as a source.
group_vars <- vapply(dplyr::groups(x), deparse, character(1))
res <- as.vega(dplyr::ungroup(x), paste0(name, "_flat"), ...)
res[[length(res) + 1]] <- list(
name = name,
source = paste0(name, "_flat"),
transform = list(list(
type = "treefacet",
keys = as.list(paste0("data.", safe_vega_var(group_vars)))
))
)
res
}