-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdrift.py
160 lines (127 loc) · 4.89 KB
/
drift.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import hdbscan
from sentence_transformers import SentenceTransformer
# import matplotlib.pyplot as plt
# from sklearn.manifold import TSNE
import umap
import seaborn as sns
import numpy as np
class DriftEstimator:
def __init__(
self,
dim=4,
min_cluster_size=10,
min_samples=3,
model_name='all-MiniLM-L6-v2',
parametric_umap=True,
):
self.dim = dim
self.min_cluster_size = min_cluster_size
self.min_samples = min_samples
self.parametric_umap = parametric_umap
self.model = SentenceTransformer(model_name)
self.reducer = None
self.clusterer = hdbscan.HDBSCAN(
min_cluster_size=min_cluster_size,
min_samples=min_samples,
metric='l2',
prediction_data=True,
gen_min_span_tree=True
)
def get_params(self,deep=True):
return {'dim':self.dim,'min_cluster_size':self.min_cluster_size,'min_samples':self.min_samples}
def set_params(self, **params):
for param, value in params.items():
setattr(self, param, value) # Update existing attributes
self.clusterer = hdbscan.HDBSCAN(
min_cluster_size=self.min_cluster_size,
min_samples=self.min_samples,
metric='l2',
prediction_data=True,
gen_min_span_tree=True
)
return self
def _generate_cluster_membership_dict(self, queries):
self.clusters = {}
for i, label in enumerate(self.clusterer.labels_):
if label not in self.clusters:
self.clusters[label] = []
self.clusters[label].append(queries[i])
def print_cluster_membership(self):
for key in sorted(self.clusters):
print("\n", key, len(self.clusters[key]))
for query in self.clusters[key]:
print(query)
def fit(self, queries):
self.reducer = None # reset reducer
self.queries = queries
self.embeddings = self._generate_embeddings(queries)
self.clusterer.fit(self.embeddings)
# store cluster dict
self._generate_cluster_membership_dict(queries)
# def fit_predict(self, queries):
# embeddings = self._generate_embeddings(queries)
# self.clusterer.fit_predict(embeddings)
# # store cluster dict
# self._generate_cluster_membership_dict(queries)
def score(self, data, targets=None):
# embeddings = self._generate_embeddings(data)
# self.clusterer.fit(embeddings)
if hasattr(self.clusterer, "relative_validity_"):
return self.clusterer.relative_validity_
else:
return -1 # Return a default low score if clustering failed or is not done yet
def predict(self, new_queries):
# return hdbscan.prediction.membership_vector(self.clusterer, self._generate_embeddings(queries))
embeddings = self._generate_embeddings(new_queries)
soft_labels = hdbscan.prediction.membership_vector(self.clusterer, embeddings)
# print(soft_labels)
soft_probs = np.max(soft_labels, axis=-1)
labels, scores = hdbscan.approximate_predict(self.clusterer, embeddings)
return labels, scores, soft_probs
# def visualize_tsne(self, queries):
# embeddings = self._generate_embeddings(queries)
# # reduce with TSNE
# perplexity = min(30, embeddings.shape[0]-1)
# tsne = TSNE(n_components=2, perplexity=perplexity, random_state=42)
# reduced_embeddings = tsne.fit_transform(embeddings)
# # plot
# plt.figure(figsize=(10, 6))
# unique_labels = set(self.clusterer.labels_)
# for label in unique_labels:
# indices = self.clusterer.labels_ == label
# plt.scatter(reduced_embeddings[indices, 0], reduced_embeddings[indices, 1], label=f'Cluster {label}')
# plt.legend()
# plt.title("HDBSCAN Clustering of Queries with TSNE")
# plt.show()
def visualize_umap(self, queries):
embeddings = self._generate_embeddings(queries)
# Visualize Clusters
plt.figure(figsize=(10, 6))
sns.scatterplot(x=embeddings[:,0], y=embeddings[:,1], hue=self.clusterer.labels_, palette="bright", legend="full", s=30)
plt.title("HDBSCAN Clusters in UMAP Space")
plt.show()
def _generate_embeddings(self, queries):
"""Generate sentence embeddings for user queries."""
embeddings = self.model.encode(queries, convert_to_numpy=True, show_progress_bar=True, normalize_embeddings=True)
if not self.reducer:
# Initialize and fit reducer
if self.parametric_umap:
self.reducer = umap.parametric_umap.ParametricUMAP(
n_components=self.dim,
metric="cosine",
random_state=42,
init="random"
)
else:
# this is faster, but not good for projecting new points into the same reduced space
self.reducer = umap.UMAP(
n_components=self.dim,
metric="cosine",
random_state=42,
init="random"
)
reduced_embeddings = self.reducer.fit_transform(embeddings)
else:
# apply reducer
reduced_embeddings = self.reducer.transform(embeddings)
return reduced_embeddings