forked from tadejmagajna/HereIsWally
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfind_wally_pretty.py
62 lines (50 loc) · 2.53 KB
/
find_wally_pretty.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from matplotlib import pyplot as plt
import numpy as np
import sys
import tensorflow as tf
import matplotlib
from PIL import Image
import matplotlib.patches as patches
model_path = './trained_model/frozen_inference_graph.pb'
image_path='eval_images/1.jpg'
def draw_box(box, image_np):
#expand the box by 50%
box += np.array([-(box[2] - box[0])/2, -(box[3] - box[1])/2, (box[2] - box[0])/2, (box[3] - box[1])/2])
fig = plt.figure()
ax = plt.Axes(fig, [0., 0., 1., 1.])
fig.add_axes(ax)
#draw blurred boxes around box
ax.add_patch(patches.Rectangle((0,0),box[1]*image_np.shape[1], image_np.shape[0],linewidth=0,edgecolor='none',facecolor='w',alpha=0.8))
ax.add_patch(patches.Rectangle((box[3]*image_np.shape[1],0),image_np.shape[1], image_np.shape[0],linewidth=0,edgecolor='none',facecolor='w',alpha=0.8))
ax.add_patch(patches.Rectangle((box[1]*image_np.shape[1],0),(box[3]-box[1])*image_np.shape[1], box[0]*image_np.shape[0],linewidth=0,edgecolor='none',facecolor='w',alpha=0.8))
ax.add_patch(patches.Rectangle((box[1]*image_np.shape[1],box[2]*image_np.shape[0]),(box[3]-box[1])*image_np.shape[1], image_np.shape[0],linewidth=0,edgecolor='none',facecolor='w',alpha=0.8))
return fig, ax
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(model_path, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(
(im_height, im_width, 3)).astype(np.uint8)
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
image_np = load_image_into_numpy_array(Image.open(image_path))
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# Actual detection.
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: np.expand_dims(image_np, axis=0)})
if scores[0][0] < 0.1:
sys.exit('Wally not found :(')
print('Wally found')
fig, ax = draw_box(boxes[0][0], image_np)
ax.imshow(image_np)
plt.show()