This repository has been archived by the owner on Oct 19, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 284
/
caffe_to_tensorflow.py
194 lines (152 loc) · 5.6 KB
/
caffe_to_tensorflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import os
os.environ["GLOG_minloglevel"] = "2"
from utils import *
import matplotlib.pyplot as plt
import skimage
import caffe
import numpy as np
import tensorflow as tf
import vgg16
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_boolean('only_caffe', False,
"""Only run caffe""")
tf.app.flags.DEFINE_boolean('only_tf', False,
"""Only run tf""")
def tf_show_layer(image):
skimage.io.imshow(image)
skimage.io.show()
# input as gotten from skimage.io.imread() that is
# [height, width, 3] and scaled between 0 and 1
# output is scaled to 0 - 255 with mean subtracted
# output [in_channels, in_height, in_width]
def preprocess(img):
out = np.copy(img) * 255
out = out[:, :, [2,1,0]] # swap channel from RGB to BGR
# sub mean
out[:,:,0] -= vgg16.VGG_MEAN[0]
out[:,:,1] -= vgg16.VGG_MEAN[1]
out[:,:,2] -= vgg16.VGG_MEAN[2]
out = out.transpose((2,0,1)) # h, w, c -> c, h, w
return out
def deprocess(img):
out = np.copy(img)
out = out.transpose((1,2,0)) # c, h, w -> h, w, c
out[:,:,0] += vgg16.VGG_MEAN[0]
out[:,:,1] += vgg16.VGG_MEAN[1]
out[:,:,2] += vgg16.VGG_MEAN[2]
out = out[:, :, [2,1,0]]
out /= 255
return out
#caffe.set_mode_cpu()
net_caffe = caffe.Net("VGG_2014_16.prototxt", "VGG_ILSVRC_16_layers.caffemodel", caffe.TEST)
caffe_layers = {}
for i, layer in enumerate(net_caffe.layers):
layer_name = net_caffe._layer_names[i]
caffe_layers[layer_name] = layer
def caffe_weights(layer_name):
layer = caffe_layers[layer_name]
return layer.blobs[0].data
def caffe_bias(layer_name):
layer = caffe_layers[layer_name]
return layer.blobs[1].data
# converts caffe filter to tf
# tensorflow uses [filter_height, filter_width, in_channels, out_channels]
# 2 3 1 0
# need to transpose channel axis in the weights
# caffe: a convolution layer with 96 filters of 11 x 11 spatial dimension
# and 3 inputs the blob is 96 x 3 x 11 x 11
# caffe uses [out_channels, in_channels, filter_height, filter_width]
# 0 1 2 3
def caffe2tf_filter(name):
f = caffe_weights(name)
return f.transpose((2, 3, 1, 0))
# caffe blobs are [ channel, height, width ]
# this returns [ height, width, channel ]
def caffe2tf_conv_blob(name):
blob = net_caffe.blobs[name].data[0]
return blob.transpose((1, 2, 0))
def caffe2tf_1d_blob(name):
blob = net_caffe.blobs[name].data[0]
return blob
class ModelFromCaffe(vgg16.Model):
def get_conv_filter(self, name):
w = caffe2tf_filter(name)
return tf.constant(w, dtype=tf.float32, name="filter")
def get_bias(self, name):
b = caffe_bias(name)
return tf.constant(b, dtype=tf.float32, name="bias")
def get_fc_weight(self, name):
cw = caffe_weights(name)
if name == "fc6":
assert cw.shape == (4096, 25088)
cw = cw.reshape((4096, 512, 7, 7))
cw = cw.transpose((2, 3, 1, 0))
cw = cw.reshape(25088, 4096)
else:
cw = cw.transpose((1, 0))
return tf.constant(cw, dtype=tf.float32, name="weight")
def show_caffe_net_input():
x = net_caffe.blobs['data'].data[0]
assert x.shape == (3, 224, 224)
i = deprocess(x)
skimage.io.imshow(i)
skimage.io.show()
def same_tensor(a, b):
return np.linalg.norm(a - b) < 0.1
def main():
global tf_activations
cat = load_image("cat.jpg")
run_caffe = not FLAGS.only_tf
run_tf = not FLAGS.only_caffe
ran_both = run_caffe and run_tf
if run_caffe:
print "caffe session"
assert same_tensor(deprocess(preprocess(cat)), cat)
assert (0 <= cat).all() and (cat <= 1.0).all()
net_caffe.blobs['data'].data[0] = preprocess(cat)
assert net_caffe.blobs['data'].data[0].shape == (3, 224, 224)
#show_caffe_net_input()
net_caffe.forward()
prob = net_caffe.blobs['prob'].data[0]
top1 = print_prob(prob)
assert top1 == "n02123045 tabby, tabby cat"
if run_tf:
print "tensorflow session"
images = tf.placeholder("float", [None, 224, 224, 3], name="images")
m = ModelFromCaffe()
m.build(images)
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
assert cat.shape == (224, 224, 3)
batch = cat.reshape((1, 224, 224, 3))
assert batch.shape == (1, 224, 224, 3)
assert (0 <= batch).all() and (batch <= 1.0).all()
out = sess.run([m.prob, m.relu1_1, m.pool5, m.fc6], feed_dict={ images: batch })
tf_activations = {
'prob': out[0][0],
'relu1_1': out[1][0],
'pool5': out[2][0],
'fc6': out[3][0],
}
top1 = print_prob(tf_activations['prob'])
assert top1 == "n02123045 tabby, tabby cat"
# Now we compare tf_activations to net_caffe's if we ran a forward pass
# in both networks.
if ran_both:
assert same_tensor(caffe2tf_conv_blob("conv1_1"), tf_activations['relu1_1'])
assert same_tensor(caffe2tf_conv_blob("pool5"), tf_activations['pool5'])
print "diff fc6", np.linalg.norm(caffe2tf_1d_blob("fc6a") - tf_activations['fc6'])
assert caffe_weights("fc6").shape == (4096, 25088)
assert caffe_bias("fc6").shape == (4096,)
assert same_tensor(caffe2tf_1d_blob("fc6a"), tf_activations['fc6'])
assert same_tensor(caffe2tf_1d_blob("prob"), tf_activations['prob'])
graph = tf.get_default_graph()
graph_def = graph.as_graph_def()
print "graph_def byte size", graph_def.ByteSize()
graph_def_s = graph_def.SerializeToString()
save_path = "vgg16.tfmodel"
with open(save_path, "wb") as f:
f.write(graph_def_s)
print "saved model to %s" % save_path
if __name__ == "__main__":
main()