-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcifar10.py
90 lines (74 loc) · 3.16 KB
/
cifar10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import argparse
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from kernel_conv.conv import kernel_wrapper
from kernel_conv.kernels import *
from tqdm import tqdm
torch.autograd.set_detect_anomaly(True)
def main():
# Parsing command line args
parser = argparse.ArgumentParser(description='CIFAR10 example')
parser.add_argument('--kernel', type=str, default=None,
help='Kernel type to use: [gaussian, polynomial, sigmoid] (default: None)')
parser.add_argument('--epoch', type=int, default=2, help='Number of epochs (default: 2)')
parser.add_argument('--batch_size', type=int, default=4, help='Batch suze (default: 4)')
parser.add_argument('--gpu', type=bool, default=True, help='Use GPU? (default: True)')
args = parser.parse_args()
device = 'cpu'
if args.gpu:
device = 'cuda'
# Initiating network
resnet50 = torchvision.models.resnet50()
resnet50._modules['fc'] = torch.nn.Linear(2048, 10, True)
net = resnet50
if args.kernel == 'gaussian':
kernel_wrapper(net, GaussianKernel())
elif args.kernel == 'polynomial':
kernel_wrapper(net, PolynomialKernel())
elif args.kernel == 'sigmoid':
kernel_wrapper(net, SigmoidKernel())
elif args.kernel is not None:
raise Exception('Invalid kernel')
net.to(device)
# Loading datasets
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.49, 0.48, 0.45), (0.25, 0.24, 0.26))
])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size, shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=args.batch_size, shuffle=False, num_workers=2)
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(net.parameters(), lr=0.01, momentum=0.5)
print('=' * 5 + 'TRAINING' + '=' * 5)
for epoch in tqdm(range(args.epoch)):
running_loss = 0
for i, (inputs, labels) in enumerate(trainloader):
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print('Epoch %i complete, loss: %f' % (epoch, running_loss / len(trainloader)))
print('=' * 5 + 'TESTING' + '=' * 5)
correct = 0
total = 0
with torch.no_grad():
net.eval()
for (images, labels) in testloader:
images = images.to(device)
labels = labels.to(device)
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (
100 * correct / total))
if __name__ == '__main__':
main()