-
Notifications
You must be signed in to change notification settings - Fork 92
/
sampeling.go
145 lines (123 loc) · 3.85 KB
/
sampeling.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
package CloudForest
import (
"math/rand"
)
type Bagger interface {
Sample(samples *[]int, n int)
}
//BalancedSampler provides for random sampelign of integers (usually case indexes)
//in a way that ensures a balanced presence of classes.
type BalancedSampler struct {
Cases [][]int
}
//NeaBalancedSampler initalizes a balanced sampler that will evenly balance cases
//between the classes present in the provided DesnseeCatFeature.
func NewBalancedSampler(catf *DenseCatFeature) (s *BalancedSampler) {
s = &BalancedSampler{make([][]int, 0, catf.NCats())}
for i := 0; i < catf.NCats(); i++ {
s.Cases = append(s.Cases, make([]int, 0, catf.Length()))
}
for i, v := range catf.CatData {
if !catf.IsMissing(i) {
s.Cases[v] = append(s.Cases[v], i)
}
}
return
}
//Sample samples n integers in a balnced-with-replacment fashion into the provided array.
func (s *BalancedSampler) Sample(samples *[]int, n int) {
(*samples) = (*samples)[0:0]
nCases := len(s.Cases)
c := 0
for i := 0; i < n; i++ {
c = rand.Intn(nCases)
(*samples) = append((*samples), s.Cases[c][rand.Intn(len(s.Cases[c]))])
}
}
//SecondaryBalancedSampler roughly balances the target feature within the classes of another catagorical
//feature while roughly preserving the origional rate of the secondary feature.
type SecondaryBalancedSampler struct {
Total int
Counts []int
Samplers [][][]int
}
//NewSecondaryBalancedSampler returns an initalized balanced sampler.
func NewSecondaryBalancedSampler(target *DenseCatFeature, balanceby *DenseCatFeature) (s *SecondaryBalancedSampler) {
nSecondaryCats := balanceby.NCats()
s = &SecondaryBalancedSampler{0, make([]int, nSecondaryCats, nSecondaryCats), make([][][]int, 0, nSecondaryCats)}
for i := 0; i < nSecondaryCats; i++ {
s.Samplers = append(s.Samplers, make([][]int, 0, target.NCats()))
for j := 0; j < target.NCats(); j++ {
s.Samplers[i] = append(s.Samplers[i], make([]int, 0, target.Length()))
}
}
for i := 0; i < target.Length(); i++ {
if !target.IsMissing(i) && !balanceby.IsMissing(i) {
s.Total += 1
balanceCat := balanceby.Geti(i)
targetCat := target.Geti(i)
s.Counts[balanceCat] += 1
s.Samplers[balanceCat][targetCat] = append(s.Samplers[balanceCat][targetCat], i)
}
}
return
}
func (s *SecondaryBalancedSampler) Sample(samples *[]int, n int) {
(*samples) = (*samples)[0:0]
b := 0
c := 0
for i := 0; i < n; i++ {
b = rand.Intn(s.Total)
for j, v := range s.Counts {
b = b - v
if b < 0 || j == (len(s.Counts)-1) {
b = j
break
}
}
nCases := len(s.Samplers[b])
c = rand.Intn(nCases)
(*samples) = append((*samples), s.Samplers[b][c][rand.Intn(len(s.Samplers[b][c]))])
}
}
/*
SampleFirstN ensures that the first n entries in the supplied
deck are randomly drawn from all entries without replacement for use in selecting candidate
features to split on. It accepts a pointer to the deck so that it can be used repeatedly on
the same deck avoiding reallocations.
*/
func SampleFirstN(deck *[]int, samples *[]int, n int, nconstants int) {
cards := *deck
length := len(cards)
old := 0
randi := 0
lastSample := 0
nDrawnConstants := 0
nnonconstant := length - nconstants
for i := 0; i < n && i < nnonconstant; i++ {
randi = lastSample + rand.Intn(length-nDrawnConstants-lastSample)
//randi = lastSample + rand.Intn(nnonconstant-lastSample)
if randi >= nnonconstant {
nDrawnConstants++
continue
}
old = cards[lastSample]
cards[lastSample] = cards[randi]
cards[randi] = old
lastSample++
}
if samples != nil {
(*samples) = cards[:lastSample]
}
}
/*
SampleWithReplacment samples nSamples random draws from [0,totalCases) with replacement
for use in selecting cases to grow a tree from.
*/
func SampleWithReplacment(nSamples int, totalCases int) (cases []int) {
cases = make([]int, 0, nSamples)
for i := 0; i < nSamples; i++ {
cases = append(cases, rand.Intn(totalCases))
}
return
}