Skip to content
/ pyfair Public
forked from Hive-Systems/pyfair

Factor Analysis of Information Risk (FAIR) model written in Python.

License

Notifications You must be signed in to change notification settings

ryd-dev/pyfair

Repository files navigation

pyfair

logo

Factor Analysis of Information Risk (FAIR) model written in Python.

This package endeavors to create a simple API for automating the creation of FAIR Monte Carlo risk simulations.

This is based in large part on:

  1. the Open FAIR™ Technical Standard published by the Open Group; and,
  2. Measuring and Managing Information Risk

"Open FAIR" is a trademark of the Open Group.

Installation

pyfair is available on PyPI. To use pyfair with your Python installation, you can run:

pip install pyfair

Documentation

Documentation can be found at the Read the Docs site.

Code

import pyfair

# Create using LEF (PERT), PL, (PERT), and SL (constant)
model1 = pyfair.FairModel(name="Regular Model 1", n_simulations=10_000)
model1.input_data('Loss Event Frequency', low=20, mode=100, high=900)
model1.input_data('Primary Loss', low=3_000_000, mode=3_500_000, high=5_000_000)
model1.input_data('Secondary Loss', constant=3_500_000)
model1.calculate_all()

# Create another model using LEF (Normal) and LM (PERT)
model2 = pyfair.FairModel(name="Regular Model 2", n_simulations=10_000)
model2.input_data('Loss Event Frequency', mean=.3, stdev=.1)
model2.input_data('Loss Magnitude', low=2_000_000_000, mode=3_000_000_000, high=5_000_000_000)
model2.calculate_all()

# Create metamodel by combining 1 and 2
mm = pyfair.FairMetaModel(name='My Meta Model!', models=[model1, model2])
mm.calculate_all()

# Create report comparing 2 vs metamodel.
fsr = pyfair.FairSimpleReport([model1, mm])
fsr.to_html('output.html')

Report Output

Overview

Tree

Violin

Serialized Model

{
    "Loss Event Frequency": {
        "low": 20,
        "mode": 100,
        "high": 900
    },
    "Loss Magnitude": {
        "low": 3000000,
        "mode": 3500000,
        "high": 5000000
    },
    "name": "Regular Model 1",
    "n_simulations": 10000,
    "random_seed": 42,
    "model_uuid": "b6c6c968-a03c-11e9-a5db-f26e0bbd6dbc",
    "type": "FairModel",
    "creation_date": "2019-07-06 17:23:43.647370"
}

About

Factor Analysis of Information Risk (FAIR) model written in Python.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 97.3%
  • CSS 1.7%
  • HTML 1.0%