-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathanalysis.py
228 lines (194 loc) · 10.3 KB
/
analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import torch
import argparse
from utils.load_data.data_loader_instances import load_dataset
import torchvision
import matplotlib.pyplot as plt
import numpy as np
import os
from utils.plot_images import imshow
from utils.utils import load_model
from utils.classify_data import classify_data
from utils.knn_on_latent import report_knn_on_latent, extract_full_data
from utils.evaluation import compute_mean_variance_per_dimension
from utils.plot_images import plot_images_in_line, generate_fancy_grid
from utils.utils import importing_model
from sklearn.manifold import TSNE
import copy
from pylab import rcParams
parser = argparse.ArgumentParser(description='VAE+VampPrior')
parser.add_argument('--KNN', action='store_true', default=False, help='run KNN classification on latent')
parser.add_argument('--generate', action='store_true', default=False, help='generate images')
parser.add_argument('--classify', action='store_true', default=False,
help='train a classifier on data with augmentation')
parser.add_argument('--dir', type=str, default='directory of pretrained model')
parser.add_argument('--just_log_likelihood', action='store_true', default=False)
parser.add_argument('--cyclic_generation', action='store_true', default=False, help='cyclic generation')
parser.add_argument('--training_set_size', default=50000, type=int)
parser.add_argument('--hyper_lambda', type=float, default=0.4, help='proportion of real data to augmented data')
parser.add_argument('--lr', type=float, default=0.1)
parser.add_argument('--batch_size', type=int, default=100)
parser.add_argument('--input_size', type=list, default=[1, 28, 28])
parser.add_argument('--count_active_dimensions', action='store_true', default=False)
parser.add_argument('--grid_interpolation', action='store_true', default=False)
parser.add_argument('--tsne_visualization', action='store_true', default=False)
parser.add_argument('--hidden_units', type=int, default=1024)
parser.add_argument('--save_model_path', type=str, default='')
parser.add_argument('--classification_dir', type=str, default='classification_report')
parser.add_argument('--epochs', type=int, default=100)
parser.add_argument('--seed', type=int, default=1)
args = parser.parse_args()
print(args)
TRAIN_NUM = 50000
def plot_data(data, labels):
k = 10
print(data.shape)
subplot_num = data.shape[1]
for i in range(subplot_num):
plt.subplot2grid((subplot_num, 1), (i, 0), colspan=1, rowspan=1)
imshow(torchvision.utils.make_grid(data[:k, i, :].view(-1, 1, 28, 28)))
plt.axis('off')
print(labels[:k, i, :].squeeze())
plt.show()
directory = args.dir
def grid_interpolation_in_latent(model, dir, index, reference_image):
z, _ = model.q_z(reference_image.to(args.device), prior=True)
whole_generation = []
for offset_0 in range(-2, 3, 1):
row_generation = []
for offset_1 in range(-2, 3, 1):
new_z = copy.deepcopy(z)
new_z[0][0] += offset_0*3
new_z[0][1] += offset_1*3
image = model.generate_x_from_z(new_z, with_reparameterize=False)
row_generation.append(image)
whole_generation.append(torch.cat(row_generation, dim=0))
# print("LENNN", len(whole_generation))
whole_generation = torch.cat(whole_generation, dim=0)
print('whole_generation shape', whole_generation.shape)
imshow(torchvision.utils.make_grid(whole_generation.reshape(-1, *model.args.input_size), nrow=5))
save_dir = os.path.join(dir, 'grid_interpolation')
os.makedirs(save_dir, exist_ok=True)
plt.axis('off')
plt.savefig(os.path.join(save_dir, 'interpolation{}'.format(i)), bbox='tight')
def compute_test_metrics(test_log_likelihood, test_kl, test_re):
test_log_likelihood.append(torch.load(dir + model_name + '.test_log_likelihood'))
kl = torch.load(dir + model_name + '.test_kl')
if type(kl) == torch.Tensor:
kl = kl.cpu().numpy()
test_kl.append(kl)
reconst = torch.load(dir + model_name + '.test_re')
if type(reconst) == torch.Tensor:
reconst = reconst.cpu().numpy()
test_re.append(reconst)
def cyclic_generation(start_data, dir, index):
cyclic_generation_dir = os.path.join(dir, 'cyclic_generation')
os.makedirs(cyclic_generation_dir, exist_ok=True)
single_data = start_data.unsqueeze(0)
generated_cycle = [single_data.to(args.device)]
for i in range(29):
single_data = \
model.reference_based_generation_x(N=1, reference_image=single_data)
generated_cycle.append(single_data)
generated_cycle = torch.cat(generated_cycle, dim=0)
plot_images_in_line(generated_cycle, args, cyclic_generation_dir, 'cycle_{}.png'.format(index))
temp = ''
active_units_text = ''
args.device = 'cuda' if torch.cuda.is_available() else 'cpu'
for folder in sorted(os.listdir(directory)):
if os.path.isdir(directory+'/'+folder) is False:
continue
knn_results = []
test_log_likelihoods, test_kl, test_reconst, active_dimensions = [], [], [], []
knn_dictionary = {'3': [], '5': [], '7': [], '9': [], '11': [], '13': [], '15': []}
torch.manual_seed(args.seed)
if args.device=='cuda':
torch.cuda.manual_seed(args.seed)
np.random.seed(args.seed)
for filename in os.listdir(directory+'/'+folder):
print('filename**', filename)
dir = directory + '/' + folder+'/'+filename + '/'
model_name_start_index = folder.find('model_name=')
model_name = folder[model_name_start_index + len('model_name='):]
print("MODEL NAME", model_name)
config = torch.load(dir + model_name + '.config')
config.device = args.device
VAE = importing_model(config)
model = VAE(config)
model.to(args.device)
train_loader, val_loader, test_loader, config = load_dataset(config,
training_num=args.training_set_size,
no_binarization=True)
if args.just_log_likelihood is False:
load_model(dir + 'checkpoint_best.pth', model)
model.eval()
try:
print('prior variance', model.prior_log_variance.item())
except:
pass
if args.cyclic_generation:
with torch.no_grad():
for i in range(10):
random_image = torch.rand([784])
cyclic_generation(random_image, dir, index=i)
if args.KNN:
with torch.no_grad():
report_knn_on_latent(train_loader, val_loader, test_loader, model,
dir, knn_dictionary, args, val=False)
if args.generate:
with torch.no_grad():
exemplars_n = 50
selected_indices = torch.randint(low=0, high=config.training_set_size, size=(exemplars_n,))
reference_images, indices, labels =train_loader.dataset[selected_indices]
per_exemplar = 11
generated = model.reference_based_generation_x(N=per_exemplar, reference_image=reference_images)
generated = generated.reshape(-1, per_exemplar, *config.input_size)
rcParams['figure.figsize'] = 4, 3
generated_dir = dir + 'generated/'
if config.use_logit:
reference_images = model.logit_inverse(reference_images)
generate_fancy_grid(config, dir, reference_images, generated)
if args.count_active_dimensions:
train_loader, val_loader, test_loader, config = load_dataset(config,
training_num=args.training_set_size,
no_binarization=False)
with torch.no_grad():
num_active = compute_mean_variance_per_dimension(args, model, test_loader)
active_dimensions.append(num_active)
#TODO remove loop
if args.grid_interpolation:
with torch.no_grad():
for i in range(100):
image = train_loader.dataset.tensors[0][torch.randint(low=0, high=args.training_set_size,
size=(1,))]
grid_interpolation_in_latent(model, dir, i, reference_image=image)
if args.tsne_visualization:
test_x, _, test_labels = extract_full_data(test_loader)
test_z, _ = model.q_z(test_x.to(args.device))
tsne = TSNE(n_components=2)
plt_colors = np.array(
['blue', 'orange', 'green', 'red', 'cyan', 'pink', 'purple', 'brown', 'gray', 'olive'])
points_to_visualize = tsne.fit_transform(X=test_z.detach().cpu().numpy())
plt.scatter(points_to_visualize[:, 0], points_to_visualize[:, 1],
c=plt_colors[test_labels.cpu().numpy()], s=2)
plt.savefig(dir+'tsne.png')
plt.show()
if args.classify:
test_acc = []
val_acc = []
test_acc_single_run, val_acc_single_run = classify_data(train_loader, val_loader, test_loader,
args.classification_dir, args, model)
test_acc.append(test_acc_single_run)
val_acc.append(val_acc_single_run)
test_acc = np.array(test_acc)
val_acc = np.array(val_acc)
print('averaged test accuracy: {0:.2f} \\pm {1:.2f}'.format(np.mean(test_acc), np.std(test_acc)))
print('averaged val accuracy: {0:.2f} \\pm {1:.2f}'.format(np.mean(val_acc), np.std(val_acc)))
exit()
else:
compute_test_metrics(test_log_likelihoods, test_kl, test_reconst)
if args.just_log_likelihood:
test_log_likelihoods = np.array(test_log_likelihoods)
print("test log-likelihood", np.mean(test_log_likelihoods), np.std(test_log_likelihoods))
if args.count_active_dimensions:
active_dimensions = np.array(active_dimensions).astype(float)
print(np.mean(active_dimensions), np.std(active_dimensions))