forked from AntixK/PyTorch-VAE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlvae.py
271 lines (224 loc) · 9.44 KB
/
lvae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import torch
from models import BaseVAE
from torch import nn
from torch.nn import functional as F
from .types_ import *
from math import floor, pi, log
def conv_out_shape(img_size):
return floor((img_size + 2 - 3) / 2.) + 1
class EncoderBlock(nn.Module):
def __init__(self,
in_channels: int,
out_channels: int,
latent_dim: int,
img_size: int):
super(EncoderBlock, self).__init__()
# Build Encoder
self.encoder = nn.Sequential(
nn.Conv2d(in_channels,
out_channels,
kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(out_channels),
nn.LeakyReLU())
out_size = conv_out_shape(img_size)
self.encoder_mu = nn.Linear(out_channels * out_size ** 2 , latent_dim)
self.encoder_var = nn.Linear(out_channels * out_size ** 2, latent_dim)
def forward(self, input: Tensor) -> Tensor:
result = self.encoder(input)
h = torch.flatten(result, start_dim=1)
# Split the result into mu and var components
# of the latent Gaussian distribution
mu = self.encoder_mu(h)
log_var = self.encoder_var(h)
return [result, mu, log_var]
class LadderBlock(nn.Module):
def __init__(self,
in_channels: int,
latent_dim: int):
super(LadderBlock, self).__init__()
# Build Decoder
self.decode = nn.Sequential(nn.Linear(in_channels, latent_dim),
nn.BatchNorm1d(latent_dim))
self.fc_mu = nn.Linear(latent_dim, latent_dim)
self.fc_var = nn.Linear(latent_dim, latent_dim)
def forward(self, z: Tensor) -> Tensor:
z = self.decode(z)
mu = self.fc_mu(z)
log_var = self.fc_var(z)
return [mu, log_var]
class LVAE(BaseVAE):
def __init__(self,
in_channels: int,
latent_dims: List,
hidden_dims: List,
**kwargs) -> None:
super(LVAE, self).__init__()
self.latent_dims = latent_dims
self.hidden_dims = hidden_dims
self.num_rungs = len(latent_dims)
assert len(latent_dims) == len(hidden_dims), "Length of the latent" \
"and hidden dims must be the same"
# Build Encoder
modules = []
img_size = 64
for i, h_dim in enumerate(hidden_dims):
modules.append(EncoderBlock(in_channels,
h_dim,
latent_dims[i],
img_size))
img_size = conv_out_shape(img_size)
in_channels = h_dim
self.encoders = nn.Sequential(*modules)
# ====================================================================== #
# Build Decoder
modules = []
for i in range(self.num_rungs -1, 0, -1):
modules.append(LadderBlock(latent_dims[i],
latent_dims[i-1]))
self.ladders = nn.Sequential(*modules)
self.decoder_input = nn.Linear(latent_dims[0], hidden_dims[-1] * 4)
hidden_dims.reverse()
modules = []
for i in range(len(hidden_dims) - 1):
modules.append(
nn.Sequential(
nn.ConvTranspose2d(hidden_dims[i],
hidden_dims[i + 1],
kernel_size=3,
stride = 2,
padding=1,
output_padding=1),
nn.BatchNorm2d(hidden_dims[i + 1]),
nn.LeakyReLU())
)
self.decoder = nn.Sequential(*modules)
self.final_layer = nn.Sequential(
nn.ConvTranspose2d(hidden_dims[-1],
hidden_dims[-1],
kernel_size=3,
stride=2,
padding=1,
output_padding=1),
nn.BatchNorm2d(hidden_dims[-1]),
nn.LeakyReLU(),
nn.Conv2d(hidden_dims[-1], out_channels= 3,
kernel_size= 3, padding= 1),
nn.Tanh())
hidden_dims.reverse()
def encode(self, input: Tensor) -> List[Tensor]:
"""
Encodes the input by passing through the encoder network
and returns the latent codes.
:param input: (Tensor) Input tensor to encoder [N x C x H x W]
:return: (Tensor) List of latent codes
"""
h = input
# Posterior Parameters
post_params = []
for encoder_block in self.encoders:
h, mu, log_var = encoder_block(h)
post_params.append((mu, log_var))
return post_params
def decode(self, z: Tensor, post_params: List) -> Tuple:
"""
Maps the given latent codes
onto the image space.
:param z: (Tensor) [B x D]
:return: (Tensor) [B x C x H x W]
"""
kl_div = 0
post_params.reverse()
for i, ladder_block in enumerate(self.ladders):
mu_e, log_var_e = post_params[i]
mu_t, log_var_t = ladder_block(z)
mu, log_var = self.merge_gauss(mu_e, mu_t,
log_var_e, log_var_t)
z = self.reparameterize(mu, log_var)
kl_div += self.compute_kl_divergence(z, (mu, log_var), (mu_e, log_var_e))
result = self.decoder_input(z)
result = result.view(-1, self.hidden_dims[-1], 2, 2)
result = self.decoder(result)
return self.final_layer(result), kl_div
def merge_gauss(self,
mu_1: Tensor,
mu_2: Tensor,
log_var_1: Tensor,
log_var_2: Tensor) -> List:
p_1 = 1. / (log_var_1.exp() + 1e-7)
p_2 = 1. / (log_var_2.exp() + 1e-7)
mu = (mu_1 * p_1 + mu_2 * p_2)/(p_1 + p_2)
log_var = torch.log(1./(p_1 + p_2))
return [mu, log_var]
def compute_kl_divergence(self, z: Tensor, q_params: Tuple, p_params: Tuple):
mu_q, log_var_q = q_params
mu_p, log_var_p = p_params
#
# qz = -0.5 * torch.sum(1 + log_var_q + (z - mu_q) ** 2 / (2 * log_var_q.exp() + 1e-8), dim=1)
# pz = -0.5 * torch.sum(1 + log_var_p + (z - mu_p) ** 2 / (2 * log_var_p.exp() + 1e-8), dim=1)
kl = (log_var_p - log_var_q) + (log_var_q.exp() + (mu_q - mu_p)**2)/(2 * log_var_p.exp()) - 0.5
kl = torch.sum(kl, dim = -1)
return kl
def reparameterize(self, mu: Tensor, logvar: Tensor) -> Tensor:
"""
Reparameterization trick to sample from N(mu, var) from
N(0,1).
:param mu: (Tensor) Mean of the latent Gaussian [B x D]
:param logvar: (Tensor) Standard deviation of the latent Gaussian [B x D]
:return: (Tensor) [B x D]
"""
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return eps * std + mu
def forward(self, input: Tensor, **kwargs) -> List[Tensor]:
post_params = self.encode(input)
mu, log_var = post_params.pop()
z = self.reparameterize(mu, log_var)
recons, kl_div = self.decode(z, post_params)
#kl_div += -0.5 * torch.sum(1 + log_var - mu ** 2 - log_var.exp(), dim = 1)
return [recons, input, kl_div]
def loss_function(self,
*args,
**kwargs) -> dict:
"""
Computes the VAE loss function.
KL(N(\mu, \sigma), N(0, 1)) = \log \frac{1}{\sigma} + \frac{\sigma^2 + \mu^2}{2} - \frac{1}{2}
:param args:
:param kwargs:
:return:
"""
recons = args[0]
input = args[1]
kl_div = args[2]
kld_weight = kwargs['M_N'] # Account for the minibatch samples from the dataset
recons_loss =F.mse_loss(recons, input)
kld_loss = torch.mean(kl_div, dim = 0)
loss = recons_loss + kld_weight * kld_loss
return {'loss': loss, 'Reconstruction_Loss':recons_loss, 'KLD':-kld_loss }
def sample(self,
num_samples:int,
current_device: int, **kwargs) -> Tensor:
"""
Samples from the latent space and return the corresponding
image space map.
:param num_samples: (Int) Number of samples
:param current_device: (Int) Device to run the model
:return: (Tensor)
"""
z = torch.randn(num_samples,
self.latent_dims[-1])
z = z.to(current_device)
for ladder_block in self.ladders:
mu, log_var = ladder_block(z)
z = self.reparameterize(mu, log_var)
result = self.decoder_input(z)
result = result.view(-1, self.hidden_dims[-1], 2, 2)
result = self.decoder(result)
samples = self.final_layer(result)
return samples
def generate(self, x: Tensor, **kwargs) -> Tensor:
"""
Given an input image x, returns the reconstructed image
:param x: (Tensor) [B x C x H x W]
:return: (Tensor) [B x C x H x W]
"""
return self.forward(x)[0]