This repository has been archived by the owner on Dec 15, 2020. It is now read-only.
forked from rwightman/efficientdet-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·654 lines (559 loc) · 28.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
#!/usr/bin/env python
""" EfficientDet Training Script
This script was started from an early version of the PyTorch ImageNet example
(https://github.com/pytorch/examples/tree/master/imagenet)
NVIDIA CUDA specific speedups adopted from NVIDIA Apex examples
(https://github.com/NVIDIA/apex/tree/master/examples/imagenet)
Hacked together by Ross Wightman (https://github.com/rwightman)
"""
import os
import argparse
import time
import yaml
import logging
from collections import OrderedDict
from contextlib import suppress
from datetime import datetime
import torch
import torchvision.utils
from torch.nn.parallel import DistributedDataParallel as NativeDDP
try:
from apex import amp
from apex.parallel import DistributedDataParallel as ApexDDP
from apex.parallel import convert_syncbn_model
has_apex = True
except ImportError:
has_apex = False
has_native_amp = False
try:
if getattr(torch.cuda.amp, 'autocast') is not None:
has_native_amp = True
except AttributeError:
pass
from effdet import create_model, unwrap_bench, create_loader, create_dataset, create_evaluator
from effdet.data import resolve_input_config, SkipSubset
from effdet.anchors import Anchors, AnchorLabeler
from timm.models import resume_checkpoint, load_checkpoint
from timm.utils import *
from timm.optim import create_optimizer
from timm.scheduler import create_scheduler
torch.backends.cudnn.benchmark = True
# The first arg parser parses out only the --config argument, this argument is used to
# load a yaml file containing key-values that override the defaults for the main parser below
config_parser = parser = argparse.ArgumentParser(description='Training Config', add_help=False)
parser.add_argument('-c', '--config', default='', type=str, metavar='FILE',
help='YAML config file specifying default arguments')
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
# Dataset / Model parameters
parser.add_argument('root', metavar='DIR',
help='path to dataset')
parser.add_argument('--dataset', default='coco', type=str, metavar='DATASET',
help='Name of model to train (default: "coco"')
parser.add_argument('--model', default='tf_efficientdet_d1', type=str, metavar='MODEL',
help='Name of model to train (default: "tf_efficientdet_d1"')
add_bool_arg(parser, 'redundant-bias', default=None, help='override model config for redundant bias')
add_bool_arg(parser, 'soft-nms', default=None, help='override model config for soft-nms')
parser.add_argument('--val-skip', type=int, default=0, metavar='N',
help='Skip every N validation samples.')
parser.add_argument('--num-classes', type=int, default=None, metavar='N',
help='Override num_classes in model config if set. For fine-tuning from pretrained.')
parser.add_argument('--pretrained', action='store_true', default=False,
help='Start with pretrained version of specified network (if avail)')
parser.add_argument('--no-pretrained-backbone', action='store_true', default=False,
help='Do not start with pretrained backbone weights, fully random.')
parser.add_argument('--initial-checkpoint', default='', type=str, metavar='PATH',
help='Initialize model from this checkpoint (default: none)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='Resume full model and optimizer state from checkpoint (default: none)')
parser.add_argument('--no-resume-opt', action='store_true', default=False,
help='prevent resume of optimizer state when resuming model')
parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN',
help='Override mean pixel value of dataset')
parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD',
help='Override std deviation of of dataset')
parser.add_argument('--interpolation', default='', type=str, metavar='NAME',
help='Image resize interpolation type (overrides model)')
parser.add_argument('--fill-color', default=None, type=str, metavar='NAME',
help='Image augmentation fill (background) color ("mean" or int)')
parser.add_argument('-b', '--batch-size', type=int, default=32, metavar='N',
help='input batch size for training (default: 32)')
parser.add_argument('--clip-grad', type=float, default=10.0, metavar='NORM',
help='Clip gradient norm (default: 10.0)')
# Optimizer parameters
parser.add_argument('--opt', default='momentum', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "momentum"')
parser.add_argument('--opt-eps', default=1e-3, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: 1e-3)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--weight-decay', type=float, default=4e-5,
help='weight decay (default: 0.00004)')
# Learning rate schedule parameters
parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER',
help='LR scheduler (default: "step"')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
help='learning rate noise on/off epoch percentages')
parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
help='learning rate noise limit percent (default: 0.67)')
parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
help='learning rate noise std-dev (default: 1.0)')
parser.add_argument('--lr-cycle-mul', type=float, default=1.0, metavar='MULT',
help='learning rate cycle len multiplier (default: 1.0)')
parser.add_argument('--lr-cycle-limit', type=int, default=1, metavar='N',
help='learning rate cycle limit')
parser.add_argument('--warmup-lr', type=float, default=0.0001, metavar='LR',
help='warmup learning rate (default: 0.0001)')
parser.add_argument('--min-lr', type=float, default=1e-5, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
parser.add_argument('--epochs', type=int, default=300, metavar='N',
help='number of epochs to train (default: 2)')
parser.add_argument('--start-epoch', default=None, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--decay-epochs', type=float, default=30, metavar='N',
help='epoch interval to decay LR')
parser.add_argument('--warmup-epochs', type=int, default=5, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N',
help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
parser.add_argument('--patience-epochs', type=int, default=10, metavar='N',
help='patience epochs for Plateau LR scheduler (default: 10')
parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
help='LR decay rate (default: 0.1)')
# Augmentation parameters
parser.add_argument('--color-jitter', type=float, default=0.4, metavar='PCT',
help='Color jitter factor (default: 0.4)')
parser.add_argument('--aa', type=str, default=None, metavar='NAME',
help='Use AutoAugment policy. "v0" or "original". (default: None)'),
parser.add_argument('--reprob', type=float, default=0., metavar='PCT',
help='Random erase prob (default: 0.)')
parser.add_argument('--remode', type=str, default='pixel',
help='Random erase mode (default: "pixel")')
parser.add_argument('--recount', type=int, default=1,
help='Random erase count (default: 1)')
parser.add_argument('--train-interpolation', type=str, default='random',
help='Training interpolation (random, bilinear, bicubic default: "random")')
# loss
parser.add_argument('--smoothing', type=float, default=None, help='override model config label smoothing')
add_bool_arg(parser, 'jit-loss', default=None, help='override model config for torchscript jit loss fn')
add_bool_arg(parser, 'legacy-focal', default=None, help='override model config to use legacy focal loss')
# Model Exponential Moving Average
parser.add_argument('--model-ema', action='store_true', default=False,
help='Enable tracking moving average of model weights')
parser.add_argument('--model-ema-decay', type=float, default=0.9998,
help='decay factor for model weights moving average (default: 0.9998)')
# Misc
parser.add_argument('--sync-bn', action='store_true',
help='Enable NVIDIA Apex or Torch synchronized BatchNorm.')
parser.add_argument('--dist-bn', type=str, default='',
help='Distribute BatchNorm stats between nodes after each epoch ("broadcast", "reduce", or "")')
parser.add_argument('--seed', type=int, default=42, metavar='S',
help='random seed (default: 42)')
parser.add_argument('--log-interval', type=int, default=50, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--recovery-interval', type=int, default=0, metavar='N',
help='how many batches to wait before writing recovery checkpoint')
parser.add_argument('-j', '--workers', type=int, default=4, metavar='N',
help='how many training processes to use (default: 1)')
parser.add_argument('--save-images', action='store_true', default=False,
help='save images of input bathes every log interval for debugging')
parser.add_argument('--amp', action='store_true', default=False,
help='use NVIDIA Apex AMP or Native AMP for mixed precision training')
parser.add_argument('--apex-amp', action='store_true', default=False,
help='Use NVIDIA Apex AMP mixed precision')
parser.add_argument('--native-amp', action='store_true', default=False,
help='Use Native Torch AMP mixed precision')
parser.add_argument('--channels-last', action='store_true', default=False,
help='Use channels_last memory layout')
parser.add_argument('--pin-mem', action='store_true', default=False,
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no-prefetcher', action='store_true', default=False,
help='disable fast prefetcher')
parser.add_argument('--torchscript', dest='torchscript', action='store_true',
help='convert model torchscript for inference')
add_bool_arg(parser, 'bench-labeler', default=False,
help='label targets in model bench, increases GPU load at expense of loader processes')
parser.add_argument('--output', default='', type=str, metavar='PATH',
help='path to output folder (default: none, current dir)')
parser.add_argument('--eval-metric', default='map', type=str, metavar='EVAL_METRIC',
help='Best metric (default: "map"')
parser.add_argument('--tta', type=int, default=0, metavar='N',
help='Test/inference time augmentation (oversampling) factor. 0=None (default: 0)')
parser.add_argument("--local_rank", default=0, type=int)
def _parse_args():
# Do we have a config file to parse?
args_config, remaining = config_parser.parse_known_args()
if args_config.config:
with open(args_config.config, 'r') as f:
cfg = yaml.safe_load(f)
parser.set_defaults(**cfg)
# The main arg parser parses the rest of the args, the usual
# defaults will have been overridden if config file specified.
args = parser.parse_args(remaining)
# Cache the args as a text string to save them in the output dir later
args_text = yaml.safe_dump(args.__dict__, default_flow_style=False)
return args, args_text
def main():
setup_default_logging()
args, args_text = _parse_args()
args.pretrained_backbone = not args.no_pretrained_backbone
args.prefetcher = not args.no_prefetcher
args.distributed = False
if 'WORLD_SIZE' in os.environ:
args.distributed = int(os.environ['WORLD_SIZE']) > 1
args.device = 'cuda:0'
args.world_size = 1
args.rank = 0 # global rank
if args.distributed:
args.device = 'cuda:%d' % args.local_rank
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend='nccl', init_method='env://')
args.world_size = torch.distributed.get_world_size()
args.rank = torch.distributed.get_rank()
assert args.rank >= 0
if args.distributed:
logging.info('Training in distributed mode with multiple processes, 1 GPU per process. Process %d, total %d.'
% (args.rank, args.world_size))
else:
logging.info('Training with a single process on 1 GPU.')
use_amp = None
if args.amp:
# for backwards compat, `--amp` arg tries apex before native amp
if has_apex:
args.apex_amp = True
elif has_native_amp:
args.native_amp = True
else:
logging.warning("Neither APEX or native Torch AMP is available, using float32. "
"Install NVIDA apex or upgrade to PyTorch 1.6.")
if args.apex_amp:
if has_apex:
use_amp = 'apex'
else:
logging.warning("APEX AMP not available, using float32. Install NVIDA apex")
elif args.native_amp:
if has_native_amp:
use_amp = 'native'
else:
logging.warning("Native AMP not available, using float32. Upgrade to PyTorch 1.6.")
torch.manual_seed(args.seed + args.rank)
model = create_model(
args.model,
bench_task='train',
num_classes=args.num_classes,
pretrained=args.pretrained,
pretrained_backbone=args.pretrained_backbone,
redundant_bias=args.redundant_bias,
label_smoothing=args.smoothing,
legacy_focal=args.legacy_focal,
jit_loss=args.jit_loss,
soft_nms=args.soft_nms,
bench_labeler=args.bench_labeler,
checkpoint_path=args.initial_checkpoint,
)
model_config = model.config # grab before we obscure with DP/DDP wrappers
if args.local_rank == 0:
logging.info('Model %s created, param count: %d' % (args.model, sum([m.numel() for m in model.parameters()])))
model.cuda()
if args.channels_last:
model = model.to(memory_format=torch.channels_last)
if args.distributed and args.sync_bn:
if has_apex and use_amp != 'native':
model = convert_syncbn_model(model)
else:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
if args.local_rank == 0:
logging.info(
'Converted model to use Synchronized BatchNorm. WARNING: You may have issues if using '
'zero initialized BN layers (enabled by default for ResNets) while sync-bn enabled.')
if args.torchscript:
assert not use_amp == 'apex', 'Cannot use APEX AMP with torchscripted model, force native amp with `--native-amp` flag'
assert not args.sync_bn, 'Cannot use SyncBatchNorm with torchscripted model. Use `--dist-bn reduce` instead of `--sync-bn`'
model = torch.jit.script(model)
optimizer = create_optimizer(args, model)
amp_autocast = suppress # do nothing
loss_scaler = None
if use_amp == 'apex':
model, optimizer = amp.initialize(model, optimizer, opt_level='O1')
loss_scaler = ApexScaler()
if args.local_rank == 0:
logging.info('Using NVIDIA APEX AMP. Training in mixed precision.')
elif use_amp == 'native':
amp_autocast = torch.cuda.amp.autocast
loss_scaler = NativeScaler()
if args.local_rank == 0:
logging.info('Using native Torch AMP. Training in mixed precision.')
else:
if args.local_rank == 0:
logging.info('AMP not enabled. Training in float32.')
# optionally resume from a checkpoint
resume_epoch = None
if args.resume:
resume_epoch = resume_checkpoint(
unwrap_bench(model), args.resume,
optimizer=None if args.no_resume_opt else optimizer,
loss_scaler=None if args.no_resume_opt else loss_scaler,
log_info=args.local_rank == 0)
model_ema = None
if args.model_ema:
# Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
model_ema = ModelEmaV2(model, decay=args.model_ema_decay)
if args.resume:
load_checkpoint(unwrap_bench(model_ema), args.resume, use_ema=True)
if args.distributed:
if has_apex and use_amp != 'native':
if args.local_rank == 0:
logging.info("Using apex DistributedDataParallel.")
model = ApexDDP(model, delay_allreduce=True)
else:
if args.local_rank == 0:
logging.info("Using torch DistributedDataParallel.")
model = NativeDDP(model, device_ids=[args.device])
# NOTE: EMA model does not need to be wrapped by DDP...
if model_ema is not None and not args.resume:
# ...but it is a good idea to sync EMA copy of weights
# NOTE: ModelEma init could be moved after DDP wrapper if using PyTorch DDP, not Apex.
model_ema.set(model)
lr_scheduler, num_epochs = create_scheduler(args, optimizer)
start_epoch = 0
if args.start_epoch is not None:
# a specified start_epoch will always override the resume epoch
start_epoch = args.start_epoch
elif resume_epoch is not None:
start_epoch = resume_epoch
if lr_scheduler is not None and start_epoch > 0:
lr_scheduler.step(start_epoch)
if args.local_rank == 0:
logging.info('Scheduled epochs: {}'.format(num_epochs))
loader_train, loader_eval, evaluator = create_datasets_and_loaders(args, model_config)
if model_config.num_classes < loader_train.dataset.parser.max_label:
logging.error(
f'Model {model_config.num_classes} has fewer classes than dataset {loader_train.dataset.parser.max_label}.')
exit(1)
if model_config.num_classes > loader_train.dataset.parser.max_label:
logging.warning(
f'Model {model_config.num_classes} has more classes than dataset {loader_train.dataset.parser.max_label}.')
eval_metric = args.eval_metric
best_metric = None
best_epoch = None
saver = None
output_dir = ''
if args.local_rank == 0:
output_base = args.output if args.output else './output'
exp_name = '-'.join([
datetime.now().strftime("%Y%m%d-%H%M%S"),
args.model
])
output_dir = get_outdir(output_base, 'train', exp_name)
decreasing = True if eval_metric == 'loss' else False
saver = CheckpointSaver(
model, optimizer, args=args, model_ema=model_ema, amp_scaler=loss_scaler,
checkpoint_dir=output_dir, decreasing=decreasing, unwrap_fn=unwrap_bench)
with open(os.path.join(output_dir, 'args.yaml'), 'w') as f:
f.write(args_text)
try:
for epoch in range(start_epoch, num_epochs):
if args.distributed:
loader_train.sampler.set_epoch(epoch)
train_metrics = train_epoch(
epoch, model, loader_train, optimizer, args,
lr_scheduler=lr_scheduler, saver=saver, output_dir=output_dir,
amp_autocast=amp_autocast, loss_scaler=loss_scaler, model_ema=model_ema)
if args.distributed and args.dist_bn in ('broadcast', 'reduce'):
if args.local_rank == 0:
logging.info("Distributing BatchNorm running means and vars")
distribute_bn(model, args.world_size, args.dist_bn == 'reduce')
# the overhead of evaluating with coco style datasets is fairly high, so just ema or non, not both
if model_ema is not None:
if args.distributed and args.dist_bn in ('broadcast', 'reduce'):
distribute_bn(model_ema, args.world_size, args.dist_bn == 'reduce')
eval_metrics = validate(model_ema.module, loader_eval, args, evaluator, log_suffix=' (EMA)')
else:
eval_metrics = validate(model, loader_eval, args, evaluator)
if lr_scheduler is not None:
# step LR for next epoch
lr_scheduler.step(epoch + 1, eval_metrics[eval_metric])
if saver is not None:
update_summary(
epoch, train_metrics, eval_metrics, os.path.join(output_dir, 'summary.csv'),
write_header=best_metric is None)
# save proper checkpoint with eval metric
best_metric, best_epoch = saver.save_checkpoint(epoch=epoch, metric=eval_metrics[eval_metric])
except KeyboardInterrupt:
pass
if best_metric is not None:
logging.info('*** Best metric: {0} (epoch {1})'.format(best_metric, best_epoch))
def create_datasets_and_loaders(
args,
model_config,
transform_train_fn=None,
transform_eval_fn=None,
collate_fn=None,
):
""" Setup datasets, transforms, loaders, evaluator.
Args:
args: Command line args / config for training
model_config: Model specific configuration dict / struct
transform_train_fn: Override default image + annotation transforms (see note in loaders.py)
transform_eval_fn: Override default image + annotation transforms (see note in loaders.py)
collate_fn: Override default fast collate function
Returns:
Train loader, validation loader, evaluator
"""
input_config = resolve_input_config(args, model_config=model_config)
dataset_train, dataset_eval = create_dataset(args.dataset, args.root)
# setup labeler in loader/collate_fn if not enabled in the model bench
labeler = None
if not args.bench_labeler:
labeler = AnchorLabeler(
Anchors.from_config(model_config), model_config.num_classes, match_threshold=0.5)
loader_train = create_loader(
dataset_train,
input_size=input_config['input_size'],
batch_size=args.batch_size,
is_training=True,
use_prefetcher=args.prefetcher,
re_prob=args.reprob,
re_mode=args.remode,
re_count=args.recount,
# color_jitter=args.color_jitter,
# auto_augment=args.aa,
interpolation=args.train_interpolation or input_config['interpolation'],
fill_color=input_config['fill_color'],
mean=input_config['mean'],
std=input_config['std'],
num_workers=args.workers,
distributed=args.distributed,
pin_mem=args.pin_mem,
anchor_labeler=labeler,
transform_fn=transform_train_fn,
collate_fn=collate_fn,
)
if args.val_skip > 1:
dataset_eval = SkipSubset(dataset_eval, args.val_skip)
loader_eval = create_loader(
dataset_eval,
input_size=input_config['input_size'],
batch_size=args.batch_size,
is_training=False,
use_prefetcher=args.prefetcher,
interpolation=input_config['interpolation'],
fill_color=input_config['fill_color'],
mean=input_config['mean'],
std=input_config['std'],
num_workers=args.workers,
distributed=args.distributed,
pin_mem=args.pin_mem,
anchor_labeler=labeler,
transform_fn=transform_eval_fn,
collate_fn=collate_fn,
)
evaluator = create_evaluator(args.dataset, loader_eval.dataset, distributed=args.distributed, pred_yxyx=False)
return loader_train, loader_eval, evaluator
def train_epoch(
epoch, model, loader, optimizer, args,
lr_scheduler=None, saver=None, output_dir='', amp_autocast=suppress, loss_scaler=None, model_ema=None):
batch_time_m = AverageMeter()
data_time_m = AverageMeter()
losses_m = AverageMeter()
model.train()
end = time.time()
last_idx = len(loader) - 1
num_updates = epoch * len(loader)
for batch_idx, (input, target) in enumerate(loader):
last_batch = batch_idx == last_idx
data_time_m.update(time.time() - end)
if args.channels_last:
input = input.contiguous(memory_format=torch.channels_last)
with amp_autocast():
output = model(input, target)
loss = output['loss']
if not args.distributed:
losses_m.update(loss.item(), input.size(0))
optimizer.zero_grad()
if loss_scaler is not None:
loss_scaler(loss, optimizer, clip_grad=args.clip_grad, parameters=model.parameters())
else:
loss.backward()
if args.clip_grad:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip_grad)
optimizer.step()
torch.cuda.synchronize()
if model_ema is not None:
model_ema.update(model)
num_updates += 1
batch_time_m.update(time.time() - end)
if last_batch or batch_idx % args.log_interval == 0:
lrl = [param_group['lr'] for param_group in optimizer.param_groups]
lr = sum(lrl) / len(lrl)
if args.distributed:
reduced_loss = reduce_tensor(loss.data, args.world_size)
losses_m.update(reduced_loss.item(), input.size(0))
if args.local_rank == 0:
logging.info(
'Train: {} [{:>4d}/{} ({:>3.0f}%)] '
'Loss: {loss.val:>9.6f} ({loss.avg:>6.4f}) '
'Time: {batch_time.val:.3f}s, {rate:>7.2f}/s '
'({batch_time.avg:.3f}s, {rate_avg:>7.2f}/s) '
'LR: {lr:.3e} '
'Data: {data_time.val:.3f} ({data_time.avg:.3f})'.format(
epoch,
batch_idx, len(loader),
100. * batch_idx / last_idx,
loss=losses_m,
batch_time=batch_time_m,
rate=input.size(0) * args.world_size / batch_time_m.val,
rate_avg=input.size(0) * args.world_size / batch_time_m.avg,
lr=lr,
data_time=data_time_m))
if args.save_images and output_dir:
torchvision.utils.save_image(
input,
os.path.join(output_dir, 'train-batch-%d.jpg' % batch_idx),
padding=0,
normalize=True)
if saver is not None and args.recovery_interval and (
last_batch or (batch_idx + 1) % args.recovery_interval == 0):
saver.save_recovery(epoch, batch_idx=batch_idx)
if lr_scheduler is not None:
lr_scheduler.step_update(num_updates=num_updates, metric=losses_m.avg)
end = time.time()
# end for
if hasattr(optimizer, 'sync_lookahead'):
optimizer.sync_lookahead()
return OrderedDict([('loss', losses_m.avg)])
def validate(model, loader, args, evaluator=None, log_suffix=''):
batch_time_m = AverageMeter()
losses_m = AverageMeter()
model.eval()
end = time.time()
last_idx = len(loader) - 1
with torch.no_grad():
for batch_idx, (input, target) in enumerate(loader):
last_batch = batch_idx == last_idx
output = model(input, target)
loss = output['loss']
if evaluator is not None:
evaluator.add_predictions(output['detections'], target)
if args.distributed:
reduced_loss = reduce_tensor(loss.data, args.world_size)
else:
reduced_loss = loss.data
torch.cuda.synchronize()
losses_m.update(reduced_loss.item(), input.size(0))
batch_time_m.update(time.time() - end)
end = time.time()
if args.local_rank == 0 and (last_batch or batch_idx % args.log_interval == 0):
log_name = 'Test' + log_suffix
logging.info(
'{0}: [{1:>4d}/{2}] '
'Time: {batch_time.val:.3f} ({batch_time.avg:.3f}) '
'Loss: {loss.val:>7.4f} ({loss.avg:>6.4f}) '.format(
log_name, batch_idx, last_idx, batch_time=batch_time_m, loss=losses_m))
metrics = OrderedDict([('loss', losses_m.avg)])
if evaluator is not None:
metrics['map'] = evaluator.evaluate()
return metrics
if __name__ == '__main__':
main()