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Collaborative Learning
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Big Picture
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@ Federated l.earning
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@ Federated l.earning

» » » * Local SGD steps =
- “Federated averaging”
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Chent drift

+ Federated Learning Vg / I \
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Chent drift

FEDAVG updates MIME updates




Mime algorithm framework

for some local steps
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@ Federated vs Personalized Learning
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@ Federated vs Personalized Learning

<+ Federated

+ Ordering of training

n
: 1
min . fl(x ) Set of active clients evolves (how?)
X .
l

<« Clients = Tasks

Sequential fine-tuning

+ Collaborative / Personalized Transfer learning,

min fl (x) overparameterized models?
X

Imin ]C()(x ) <« Train alone or collaborate?

5 min f (X)



@ Decentralhized Learning
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Motivation

+ Advantages:

+ Applications:
any ML system with user data

servers, devices, sensors, hospitals, ...

AlI utility, control and privacy

aligned with data ownership


https://pixabay.com/photos/computer-business-typing-keyboard-1149148/

Required Building Blocks
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Decentralized Learning
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Communication Compression

limited-bit precision vector

e.g. 1-bit per entry reduces
communication 32 times

random / top k% of all the entries

e.g. k=0.1% reduces communication 1000 times

low rank version of the gradient?



L.ow-Rank Communication Compression

= PowerSGD
\ backprop is fast: fast compression?
linear time
j Output neurons Fast power iterations
=Ggq
é = v GT
%5 °
5 €(G)=pq'
& _

Layer gradient



Decentrahized Learning with Compression
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Building Blocks for Decentralized ML.

* Efficiency: Communication & Compute

on-device learning, Edge Al

peer-to-peer communication

* Privacy

data locality, leakage?, attacks?

* Robustness & Incentives

tolerate bad players, reward collaboration



Robustness

During Training and Inference
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Gradients from
faulty/malicious collaborators:
- Byzantine-robust Training
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Byzantine Robust Training

agg(1g;}) = avg(ig;})

= CM({g.
w:=w-—yagg({g}) &

Apwn

server

e Coordinate-wise median

[Yin et al. 2017]
& LY
® Krum
[Blanchard et al. 2018]

l ® Geometric median

— / RFA [Pillutla et al. 2019]
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Byzantine-robust training

Correct
Average gradients

Byzantine

gradient

gradient

+ Mean vs median

Zeno: Byzantine-suspicious stochastic gradient descent, 2018, Cong Xie et al.



Negative result

+ Robustness of the aggregation rule agg({g;})
does not imply robust training:

time-coupled attacks - “little is enough”

+* Any aggregation rule which does not use history

can fail for training (convergence)



Fix: Using history with momentum

+ Simply use worker momentum

+ Effectively averages past gradients, reducing variance

* (Robustly) aggregate worker momentum instead of gradients

=w —yagg(im,})



Robustness vs Fairness

Objective

Robust mean Federated Fairness
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Adversarial Attacks (at inference time)

Classifier Output
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https://arxiv.org/pdf/1712.09665.pdf

Adversarial Attacks (at mference time

“airliner”

+ 0.005 x

More info:
 http:/ / gradientscience.org/intro_adversarial /

Madry, Schmidt



http://gradientscience.org/intro_adversarial/
http://gradientscience.org/intro_adversarial/

Adversarial Attacks

+ Standard training

min f(X;)

Nl

change model

+ Attacking

max f, W(Xi) v:if -
XEROO(Xi,g) change data

+ by Projected Gradient Descent!



Privacy

+ Secure Multiparty Computation

* secure aggregation
(private gradients, public model)

+ Ditterential Privacy

+ Privacy/inference Attacks



L.everaging Heterogenous Systems
Compute & Memory Hierarchy: Which data to put in which device?

machine 1 GPU 1a machine 2
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L.everaging Heterogenous Systems

Unit A Unit B

30GB 8GB

adaptive importance sampling of datapoint
e.g. for general linear models, or word2vec



ITrends - Systems

+ new hardware
+ TPU, GraphCore, Cerebras
= Sparse ops

+ efficient numerics (limited precision), model

machine 1 GPU 1a
compression 00100
+ Software frameworks - ""l
+ AutoGrad (Jax, PyTorch, TensorFlow etc) FPGA 1b
Q1000

+ Backends for new hardware

« 1




Number formats for DI.

Sign Range Precision
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Practical tricks

+ feature hashing + limited precision operations
hash
keys function hashes
| 00
John Smith
oo
Lisa Smith -
03
> 04
Sam Doe
05
Sandra Dee
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Auto MI.

hyper-parameter optimization
zero-order methods

learning to learn
adaptive methods

neural architecture search
zero-order, warm-start
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