-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_cls.py
380 lines (327 loc) · 15.5 KB
/
train_cls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import os, sys
import argparse
import warnings
import math
import torch as tc
import util
import data
import model
import learning
import uncertainty
def main(args):
## init datasets
print("## init source datasets: %s"%(args.data.src))
ds_src = getattr(data, args.data.src)(
root=os.path.join('data', args.data.src.lower()),
batch_size=args.data.batch_size,
dim=args.data.dim,
train_rnd=True, val_rnd=False, test_rnd=False,
train_aug=args.data.aug_src is not None, val_aug=args.data.aug_src is not None, test_aug=args.data.aug_src is not None,
aug_types=args.data.aug_src,
color=True if args.data.dim[0]==3 else False,
num_workers=args.data.n_workers,
sample_size={'train': args.data.n_train_src, 'val': args.data.n_val_src, 'test': args.data.n_test_src},
seed=args.data.seed,
normalize=not args.model.normalize,
load_feat=args.data.load_feat,
)
print()
print("## init target datasets: %s"%(args.data.tar))
ds_tar = getattr(data, args.data.tar)(
root=os.path.join('data', args.data.tar.lower()),
batch_size=args.data.batch_size,
dim=args.data.dim,
train_rnd=True, val_rnd=False, test_rnd=False,
train_aug=args.data.aug_tar is not None, val_aug=args.data.aug_tar is not None, test_aug=args.data.aug_tar is not None,
aug_types=args.data.aug_tar,
color=True if args.data.dim[0]==3 else False,
num_workers=args.data.n_workers,
sample_size={'train': args.data.n_train_tar, 'val': args.data.n_val_tar, 'test': args.data.n_test_tar},
seed=args.data.seed,
normalize=not args.model.normalize,
load_feat=args.data.load_feat,
)
print()
if args.train.method == 'DANN':
print("## init domain adaptation dataset: src = %s, tar = %s"%(args.data.src, args.data.tar))
ds_da = data.DAData(ds_src, ds_tar, truncate=args.data.truncate_da)
print()
print("## init domain datasets: src = %s, tar = %s"%(args.data.src, args.data.tar))
ds_dom = data.DomainData(ds_src, ds_tar, truncate=args.data.truncate_da)
print()
## init a model
print("## init models: %s"%(args.model.base))
if 'FNN' in args.model.base or 'Linear' in args.model.base:
mdl = getattr(model, args.model.base)(n_in=args.data.dim[0], n_out=args.data.n_labels, path_pretrained=args.model.path_pretrained)
elif 'ResNet' in args.model.base:
mdl = getattr(model, args.model.base)(n_labels=args.data.n_labels, path_pretrained=args.model.path_pretrained)
else:
raise NotImplementedError
if args.data.load_feat:
print("## init models: %s"%(args.model.base_feat))
mdl = getattr(model, args.model.base_feat)(mdl)
print()
if args.model.normalize:
print('## init an image normalizer as a pre-processing model')
mdl = model.ExampleNormalizer(mdl)
if args.train.method == 'DANN':
print("## init models for adv: %s"%(args.model.adv))
mdl_adv = getattr(model, args.model.adv)(args.model.feat_dim, 1)
print("## init models for DANN")
mdl = model.DANN(mdl, mdl_adv)
if args.multi_gpus:
mdl = tc.nn.DataParallel(mdl).cuda()
print()
## learning
if args.train.method == 'src':
l = learning.ClsLearner(mdl, args.train)
if not args.model.pretrained:
print("## train over source...")
l.train(ds_src.train, ds_src.val)
elif args.train.method == 'DANN':
l = learning.ClsDALearner(mdl, args.train)
print(f"## train using {args.train.method}...")
l.train(ds_da.train, ld_test=ds_tar.test) # no model selection
elif args.train.method == 'skip':
l = learning.ClsLearner(mdl, args.train)
else:
raise NotImplementedError
print("## test...")
l.test(ds_src.test, ld_name=f'{args.data.src} (src)', verbose=True)
l.test(ds_tar.test, ld_name=f'{args.data.tar} (tar)', verbose=True)
print()
## iw learning
if args.train_iw:
## init a model
print("## init models for iw: %s"%(args.model.sd))
mdl_sd = model.SourceDisc(getattr(model, args.model.sd)(args.model.feat_dim, 2), mdl)
print()
## learning
l = learning.ClsLearner(mdl_sd, args.train_sd, name_postfix='srcdisc')
print("## train...")
l.train(ds_dom.train, ds_dom.val)
print("## test...")
l.test(ds_dom.test, ld_name='domain dataset', verbose=True)
print()
## init an IW model
mdl_cal = model.NoCal(mdl_sd, cal_target=args.cal_sd.cal_target)
mdl_iw = model.IW(mdl_cal, bound_type='mean') ## choose the uncalibrated iw
mdl_iw.eval()
## estimate the maximum importance weight
def estimate_iw_max(mdl_iw, ld, device):
iw_list = []
for x, y in ld:
x = x.to(device)
with tc.no_grad():
w = mdl_iw(x, y)
iw_list.append(w)
iw_list = tc.cat(iw_list)
iw_sorted = iw_list.sort()[0]
iw_max = iw_sorted[math.ceil(len(iw_list)*(1.0 - 0.01))]
return iw_max
iw_max = estimate_iw_max(mdl_iw, ds_src.train, args.device)
print("# iw_max = %f"%(iw_max))
## compute effective sample size
m_eff = uncertainty.estimate_eff_sample_size(ds_src.val, mdl_iw, args.device)
print(f'## effective sample size over val = {m_eff}')
## plot iw
print('## plot iw')
uncertainty.plot_iw_wrapper(ds_src.train, mdl_iw, device=args.device,
fn=os.path.join(args.snapshot_root, args.exp_name, 'figs', 'plot_iw_over_src'))
def parse_args():
## init a parser
parser = argparse.ArgumentParser(description='learning')
## meta args
parser.add_argument('--exp_name', type=str, required=True)
parser.add_argument('--snapshot_root', type=str, default='snapshots')
parser.add_argument('--cpu', action='store_true')
parser.add_argument('--multi_gpus', action='store_true')
parser.add_argument('--calibrate', action='store_true')
parser.add_argument('--train_iw', action='store_true')
parser.add_argument('--estimate', action='store_true')
## data args
parser.add_argument('--data.batch_size', type=int, default=200)
parser.add_argument('--data.n_workers', type=int, default=4)
parser.add_argument('--data.src', type=str, required=True)
parser.add_argument('--data.tar', type=str, required=True)
parser.add_argument('--data.n_labels', type=int)
#parser.add_argument('--data.img_size', type=int, nargs=3) ##TODO: img_size and dim are redundent
parser.add_argument('--data.dim', type=int, nargs='*')
parser.add_argument('--data.aug_src', type=str, nargs='*')
parser.add_argument('--data.aug_tar', type=str, nargs='*')
parser.add_argument('--data.n_train_src', type=int)
parser.add_argument('--data.n_train_tar', type=int)
parser.add_argument('--data.n_val_src', type=int)
parser.add_argument('--data.n_val_tar', type=int)
parser.add_argument('--data.n_test_src', type=int)
parser.add_argument('--data.n_test_tar', type=int)
parser.add_argument('--data.seed', type=lambda v: None if v=='None' else int(v), default=0)
parser.add_argument('--data.truncate_da', action='store_true')
parser.add_argument('--data.load_feat', type=str)
## model args
parser.add_argument('--model.base', type=str)
parser.add_argument('--model.base_feat', type=str)
parser.add_argument('--model.path_pretrained', type=str)
parser.add_argument('--model.feat_dim', type=int)
parser.add_argument('--model.sd', type=str, default='MidFNN')
parser.add_argument('--model.adv', type=str, default='MidAdvFNN')
parser.add_argument('--model.normalize', action='store_true')
## train args
parser.add_argument('--train.rerun', action='store_true')
parser.add_argument('--train.resume', type=str)
parser.add_argument('--train.method', type=str, default='src')
parser.add_argument('--train.load_final', action='store_true')
parser.add_argument('--train.optimizer', type=str, default='SGD')
parser.add_argument('--train.n_epochs', type=int, default=100)
parser.add_argument('--train.lr', type=float, default=0.01)
parser.add_argument('--train.momentum', type=float, default=0.9)
parser.add_argument('--train.weight_decay', type=float, default=0.0)
parser.add_argument('--train.lr_decay_epoch', type=int, default=20)
parser.add_argument('--train.lr_decay_rate', type=float, default=0.5)
parser.add_argument('--train.val_period', type=int, default=1)
## train args for a source discriminator
parser.add_argument('--train_sd.rerun', action='store_true')
parser.add_argument('--train_sd.resume', type=str)
parser.add_argument('--train_sd.load_final', action='store_true')
parser.add_argument('--train_sd.optimizer', type=str, default='SGD')
parser.add_argument('--train_sd.n_epochs', type=int, default=100)
parser.add_argument('--train_sd.lr', type=float, default=0.01)
parser.add_argument('--train_sd.momentum', type=float, default=0.9)
parser.add_argument('--train_sd.weight_decay', type=float, default=0.0)
parser.add_argument('--train_sd.lr_decay_epoch', type=int, default=20)
parser.add_argument('--train_sd.lr_decay_rate', type=float, default=0.5)
parser.add_argument('--train_sd.val_period', type=int, default=1)
## calibration args for a source discriminator
parser.add_argument('--cal_sd.method', type=str, default='HistBin')
parser.add_argument('--cal_sd.rerun', action='store_true')
parser.add_argument('--cal_sd.load_final', action='store_true')
## histbin parameters
parser.add_argument('--cal_sd.delta', type=float, default=1e-5)
parser.add_argument('--cal_sd.estimate_rate', action='store_true')
parser.add_argument('--cal_sd.cal_target', type=int, default=1)
## temp parameters
parser.add_argument('--cal_sd.optimizer', type=str, default='SGD')
parser.add_argument('--cal_sd.n_epochs', type=int, default=100)
parser.add_argument('--cal_sd.lr', type=float, default=0.01)
parser.add_argument('--cal_sd.momentum', type=float, default=0.9)
parser.add_argument('--cal_sd.weight_decay', type=float, default=0.0)
parser.add_argument('--cal_sd.lr_decay_epoch', type=int, default=20)
parser.add_argument('--cal_sd.lr_decay_rate', type=float, default=0.5)
parser.add_argument('--cal_sd.val_period', type=int, default=1)
args = parser.parse_args()
args = util.to_tree_namespace(args)
args.device = tc.device('cpu') if args.cpu else tc.device('cuda:0')
args = util.propagate_args(args, 'device')
args = util.propagate_args(args, 'exp_name')
args = util.propagate_args(args, 'snapshot_root')
## dataset specific parameters
if 'Normal' in args.data.src:
if args.data.n_labels is None:
args.data.n_labels = 2
if args.data.dim is None:
args.data.dim = [2048]
if args.model.base is None:
args.model.base = 'Linear'
if args.model.feat_dim is None:
assert(len(args.data.dim) == 1)
args.model.feat_dim = args.data.dim[0]
if args.model.path_pretrained is None:
args.model.pretrained = False
if args.data.n_train_src is None:
args.data.n_train_src = 50000
if args.data.n_train_tar is None:
args.data.n_train_tar = args.data.n_train_src
if args.data.n_val_src is None:
args.data.n_val_src = 50000
if args.data.n_val_tar is None:
args.data.n_val_tar = args.data.n_val_src
if args.data.n_test_src is None:
args.data.n_test_src = 50000
if args.data.n_test_tar is None:
args.data.n_test_tar = args.data.n_test_src
elif 'MNIST' in args.data.src:
if args.data.n_labels is None:
args.data.n_labels = 10
if args.data.dim is None:
args.data.dim = (3, 32, 32)
if args.model.base is None:
args.model.base = 'ResNet18'
if args.model.feat_dim is None:
args.model.feat_dim = 512
if args.model.path_pretrained is None:
args.model.pretrained = False
if args.data.n_train_src is None:
args.data.n_train_src = 50000
if args.data.n_train_tar is None:
args.data.n_train_tar = args.data.n_train_src
if args.data.n_val_src is None:
args.data.n_val_src = 10000
if args.data.n_val_tar is None:
args.data.n_val_tar = args.data.n_val_src
if args.data.n_test_src is None:
args.data.n_test_src = 10000
if args.data.n_test_tar is None:
args.data.n_test_tar = args.data.n_test_src
elif 'DomainNet' in args.data.src:
if args.data.n_labels is None:
args.data.n_labels = 345
if args.data.dim is None:
args.data.dim = (3, 224, 224)
if args.model.base is None:
args.model.base = 'ResNet101'
if args.model.feat_dim is None:
args.model.feat_dim = 2048
if args.model.path_pretrained is None:
args.model.pretrained = False
else:
args.model.pretrained = True
# if args.data.n_train_src is None:
# args.data.n_train_src = 50000
# if args.data.n_train_tar is None:
# args.data.n_train_tar = args.data.n_train_src
# if args.data.n_val_src is None:
# args.data.n_val_src = 10000 # use relatively small val set for speed up training
# if args.data.n_val_tar is None:
# args.data.n_val_tar = args.data.n_val_src
if args.data.n_test_src is None:
args.data.n_test_src = 5000 # use relatively small test set for speed up training (for when we want to compute test error during training)
if args.data.n_test_tar is None:
args.data.n_test_tar = args.data.n_test_src
if args.model.base_feat is None:
args.model.base_feat = 'ResNetFeat'
elif 'ImageNet' in args.data.src:
if args.data.n_labels is None:
args.data.n_labels = 1000
if args.data.dim is None:
args.data.dim = (3, 224, 224)
if args.model.base is None:
args.model.base = 'ResNet101'
if args.model.feat_dim is None:
args.model.feat_dim = 2048
if args.model.path_pretrained is None:
args.model.path_pretrained = 'pytorch'
if args.model.path_pretrained == 'pytorch':
args.model.pretrained = True
else:
args.model.pretrained = False
# if args.data.n_val_src is None:
# args.data.n_val_src = 25000
# if args.data.n_val_tar is None:
# args.data.n_val_tar = args.data.n_val_src
if args.data.n_test_src is None:
args.data.n_test_src = 5000 # use relatively small test set for speed up training (for when we want to compute test error during training)
if args.data.n_test_tar is None:
args.data.n_test_tar = args.data.n_test_src
if args.model.base_feat is None:
args.model.base_feat = 'ResNetFeat'
else:
raise NotImplementedError
## print args
util.print_args(args)
## setup logger
os.makedirs(os.path.join(args.snapshot_root, args.exp_name), exist_ok=True)
sys.stdout = util.Logger(os.path.join(args.snapshot_root, args.exp_name, 'out'))
return args
if __name__ == '__main__':
args = parse_args()
main(args)