forked from Plachtaa/VALL-E-X
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
242 lines (207 loc) · 9.31 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# Copyright 2023 (authors: Feiteng Li)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
modified from lhoste.dataset.speech_synthesis.py
"""
import torch
import math
import h5py
from tokenizers import Tokenizer
from typing import Union, List
import numpy as np
from tqdm import tqdm
_pad = '_'
_punctuation = ',.!?-~…'
_letters = 'NQabdefghijklmnopstuvwxyzɑæʃʑçɯɪɔɛɹðəɫɥɸʊɾʒθβŋɦ⁼ʰ`^#*=ˈˌ→↓↑ '
symbols = [_pad] + list(_punctuation) + list(_letters)
language_dict = {
'en': 0,
'zh': 1,
'ja': 2,
}
def seq2phone(tokens: Union[List, np.ndarray]):
"""
Convert tokenized phoneme ID sequence back to phoneme string
:param tokens: phoneme tokens
:return: recovered phoneme sequence
"""
phones = "".join([symbols[i] for i in tokens])
return phones
class DynamicBatchSampler(torch.utils.data.Sampler):
def __init__(self, sampler, num_tokens_fn, num_buckets=100, min_size=0, max_size=1000,
max_tokens=None, max_sentences=None, drop_last=False):
"""
:param sampler:
:param num_tokens_fn: 根据idx返回样本的长度的函数
:param num_buckets: 利用桶原理将相似长度的样本放在一个batchsize中,桶的数量
:param min_size: 最小长度的样本, 小于这个值的样本会被过滤掉。 依据这个值来创建样桶
:param max_size: 最大长度的样本
:param max_sentences: batch_size, 但是这里可以通过max_sentences 和 max_tokens 共同控制最终的大小
"""
super(DynamicBatchSampler, self).__init__(sampler)
self.sampler = sampler
self.num_tokens_fn = num_tokens_fn
self.num_buckets = num_buckets
self.min_size = min_size
self.max_size = max_size
assert max_size <= max_tokens, "max_size should be smaller than max tokens"
assert max_tokens is not None or max_sentences is not None, \
"max_tokens and max_sentences should not be null at the same time, please specify one parameter at least"
self.max_tokens = max_tokens if max_tokens is not None else float('Inf')
self.max_sentences = max_sentences if max_sentences is not None else float('Inf')
self.drop_last = drop_last
def set_epoch(self, epoch):
self.sampler.set_epoch(epoch)
def is_batch_full(self, num_tokens, batch):
if len(batch) == 0:
return False
if len(batch) == self.max_sentences:
return True
if num_tokens > self.max_tokens:
return True
return False
def __iter__(self):
buckets = [[] for _ in range(self.num_buckets)]
sample_len = [0] * self.num_buckets
for idx in self.sampler:
idx_length = self.num_tokens_fn(idx)
if not (self.min_size <= idx_length <= self.max_size):
print("sentence at index {} of size {} exceeds max_tokens, the sentence is ignored".format(idx, idx_length))
continue
index_buckets = math.floor((idx_length - self.min_size) / (self.max_size - self.min_size + 1)
* self.num_buckets)
sample_len[index_buckets] = max(sample_len[index_buckets], idx_length)
num_tokens = (len(buckets[index_buckets]) + 1) * sample_len[index_buckets]
if self.is_batch_full(num_tokens, buckets[index_buckets]):
# yield this batch
yield buckets[index_buckets]
buckets[index_buckets] = []
sample_len[index_buckets] = 0
buckets[index_buckets].append(idx)
# process left-over
leftover_batch = []
leftover_sample_len = 0
leftover = [idx for bucket in buckets for idx in bucket]
for idx in leftover:
idx_length = self.num_tokens_fn(idx)
leftover_sample_len = max(leftover_sample_len, idx_length)
num_tokens = (len(leftover_batch) + 1) * leftover_sample_len
if self.is_batch_full(num_tokens, leftover_batch):
yield leftover_batch
leftover_batch = []
leftover_sample_len = 0
leftover_batch.append(idx)
if len(leftover_batch) > 0 and not self.drop_last:
yield leftover_batch
def __len__(self):
# we do not know the exactly batch size, so do not call len(dataloader)
pass
class AudioDataset(torch.utils.data.Dataset):
def __init__(self, h5_path, ann_path, tokenizer_path):
self.h5_path = h5_path
with open(ann_path, 'r', encoding='utf-8') as f:
lines = f.readlines()
ls = [l.split("|") for l in lines]
ls_T = list(zip(*ls))
del ls_T[-1]
self.h5_paths, self.durations, self.langs, self.texts = \
list(ls_T[0]), list(ls_T[1]), list(ls_T[2]), list(ls_T[3])
self.durations = [float(dur) for dur in self.durations]
self.tokenizer = Tokenizer.from_file(tokenizer_path)
self._archive = None
def __len__(self):
return len(self.h5_paths)
def get_dur(self, idx):
return self.durations[idx]
@property
def archive(self):
if self._archive is None: # lazy loading here!
self._archive = h5py.File(self.h5_path, "r")
return self._archive
def __getitem__(self, idx):
archive = self.archive
h5_path = self.h5_paths[idx]
sub = archive[h5_path]
audio_tokens = sub['audio'][()]
phone_tokens = sub['text'][()]
dur = self.durations[idx]
lang = self.langs[idx]
text = self.texts[idx]
# tokenization should be done within dataloader
phones = seq2phone(phone_tokens)
phones = phones.replace(" ", "_")
if not len(phones):
cptpho_tokens = self.tokenizer.encode(text).ids
else:
cptpho_tokens = self.tokenizer.encode(phones).ids
assert len(cptpho_tokens)
return {
'utt_id': h5_path,
'text': text,
'audio': None,
'audio_lens': None,
'audio_features': audio_tokens,
'audio_features_lens': len(audio_tokens.T),
'text_tokens': np.array(cptpho_tokens),
'text_tokens_lens': len(cptpho_tokens),
'language': language_dict[lang],
}
def collate(batch):
utt_id_s = [b['utt_id'] for b in batch]
text_s = [b['text'] for b in batch]
audio_s = [b['audio'] for b in batch]
audio_lens_s = [b['audio_lens'] for b in batch]
audio_features_lens_s = [b['audio_features_lens'] for b in batch]
# create an empty tensor with maximum audio feature length
audio_features_s = torch.zeros([len(batch), max(audio_features_lens_s), 8], dtype=torch.int64) - 1 # audio pad with -1
text_tokens_lens_s = [b['text_tokens_lens'] for b in batch]
# create an empty tensor with maximum text tokens length
text_tokens_s = torch.zeros([len(batch), max(text_tokens_lens_s)], dtype=torch.int64) + 3 # [PAD] token id 3
language_s = [b['language'] for b in batch]
for i, b in enumerate(batch):
audio_features = b['audio_features']
audio_features_lens = b['audio_features_lens']
audio_features_s[i, :audio_features_lens, :] = torch.LongTensor(audio_features.T)
text_tokens = b['text_tokens']
text_tokens_lens = b['text_tokens_lens']
text_tokens_s[i, :text_tokens_lens] = torch.LongTensor(text_tokens)
batch = {
'utt_id': utt_id_s,
'text': text_s,
'audio': audio_s,
'audio_lens': audio_lens_s,
'audio_features': audio_features_s,
'audio_features_lens': torch.LongTensor(np.array(audio_features_lens_s)),
'text_tokens': text_tokens_s,
'text_tokens_lens': torch.LongTensor(np.array(text_tokens_lens_s)),
'languages': torch.LongTensor(np.array(language_s)),
}
return batch
def create_dataloader(data_dir="/root/valle/egs/mix", n_gpus=1, rank=0, num_workers=0, num_buckets=10, max_duration=120):
train_dataset = AudioDataset(h5_path=f"{data_dir}/audio_sum.hdf5",
ann_path=f"{data_dir}/audio_ann_sum.txt",
tokenizer_path=f"{data_dir}/bpe_69.json")
ran_sampler = torch.utils.data.distributed.DistributedSampler(
train_dataset,
num_replicas=n_gpus,
rank=rank,
shuffle=True,
)
dynamic_sampler = DynamicBatchSampler(ran_sampler, train_dataset.get_dur, num_buckets=num_buckets, max_size=20,
max_tokens=max_duration)
train_loader = torch.utils.data.DataLoader(train_dataset, num_workers=num_workers, collate_fn=collate,
batch_sampler=dynamic_sampler)
return train_loader