-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathkml_kernel.c
359 lines (294 loc) · 10.4 KB
/
kml_kernel.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
/*
* Copyright (c) 2019-2021 Ibrahim Umit Akgun
* Copyright (c) 2019-2021 Erez Zadok
* Copyright (c) 2019-2021 Stony Brook University
* Copyright (c) 2019-2021 The Research Foundation of SUNY
*
* You can redistribute it and/or modify it under the terms of the Apache
* License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0).
*/
// KML headers
#include <kml_lib.h>
#include <kernel-interfaces/io_scheduler_linear.h>
#include <xor_net.h>
#include <readahead_net.h>
#include <utility.h>
// Kernel headers
#include <asm/fpu/api.h>
#include <asm/timer.h>
#include <asm/tsc.h>
#include <linear_regression.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/timekeeping.h>
#include <linux/types.h>
// Change later to MIT right now GPL
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Umit Akgun");
MODULE_DESCRIPTION("Linux Kernel Machine Learning Library");
MODULE_VERSION("0.01");
// #define TESTING_LINEAR
// #define DEBUG_KERNEL_MODULE
extern int io_scheduler_linear_sample_counter;
extern long long io_scheduler_linear_batch_time;
extern int io_scheduler_linear_num_samples;
#ifdef TESTING_LINEAR
loff_t pos = 0;
static long long timing_sum = 0;
static float acc_sum = 0;
int get_line(struct file *fp, char line[], int buffer_size) {
int idx = 0;
do {
if (kernel_read(fp, (void *)&line[idx], 1, &pos) == 0) return -1;
} while (line[idx++] != '\n' && idx < 200);
return idx;
}
bool linear_example_check_correction(val result, val prediction) {
bool b_result, b_prediction;
b_result = result.f >= 0 ? 1 : 0;
b_prediction = prediction.f >= 0 ? 1 : 0;
return b_result == b_prediction;
}
float kernel_linear_simulation(linear_regression *linear) {
struct file *fp;
char line[200] = {0};
char time[20];
char op_type[10];
int io_time, block_no, size;
int num_train_samples = 1000;
val modula = {.f = 1000};
int op_type_int;
set_random_weights(linear->layer_list, modula);
fp = filp_open("/home/umit/research/kernel-ml/kml/build/test.output",
O_RDONLY, 0);
while (get_line(fp, line, 200) != -1) {
sscanf(line, "%s %s %d %d %d", time, op_type, &io_time, &block_no, &size);
if (strcmp(op_type, "read") == 0)
op_type_int = 1;
else if (strcmp(op_type, "r/w") == 0)
op_type_int = 1;
else
op_type_int = 0;
io_scheduler_linear_evaluate(op_type_int, block_no, io_time, linear);
if (io_scheduler_linear_sample_counter >=
io_scheduler_linear_num_samples / linear->batch_size) {
break;
}
memset((void *)line, 0, 200);
}
printk("took %lld nano seconds to execute \n",
io_scheduler_linear_batch_time);
print_weigths(linear->layer_list);
timing_sum += io_scheduler_linear_batch_time;
io_scheduler_linear_batch_time = 0;
filp_close(fp, 0);
pos = 0;
// TODO: FIX with normal API
return (float)kml_atomic_int_read(&(linear->state.num_accurate_predictions)) /
((io_scheduler_linear_sample_counter -
num_train_samples / linear->batch_size) *
linear->batch_size);
}
static int __init kml_init(void) {
int num_run = 100, i = 0;
linear_regression *linear;
float average_accuracy;
int average_accuracy_dec, average_accuracy_flo;
kernel_fpu_begin();
linear = build_linear_regression(0.03, 10, 0.99, 2);
linear->check_correctness = &linear_example_check_correction;
for (i = 0; i < num_run; i++) {
float current_acc = kernel_linear_simulation(linear);
reset_linear_regression(linear);
io_scheduler_linear_sample_counter = 0;
acc_sum += current_acc;
}
printk("\nResults:\n");
average_accuracy = acc_sum / num_run;
get_printable_float(average_accuracy, &average_accuracy_dec,
&average_accuracy_flo, 100000);
printk("average accuracy: %d.%03d\n", average_accuracy_dec,
average_accuracy_flo);
printk("average timing per iteration: %lld ns\n", timing_sum / num_run);
clean_linear_regression(linear);
kernel_fpu_end();
return 0;
}
#else
static int num_samples = 21000;
static int iter = 0;
static double acc_sum = 0;
static double timing_sum = 0;
bool xor_example_check_correction(val result, val prediction) {
bool b_prediction, b_result;
b_prediction = prediction.f >= 0.5 ? true : false;
b_result = result.f == 1 ? true : false;
return b_result == b_prediction;
}
float simulation(xor_net* xor) {
int batch_count = 0;
int num_train_samples = 20000;
int num_test_samples = 1000;
val modula = {.f = 100000};
double time_taken = 0;
float current_sample[2];
float xor_inputs[4][2] = {{0, 0}, {0, 1}, {1, 0}, {1, 1}};
float xor_outputs[4] = {0, 1, 1, 0};
int random_idx;
float current_label;
u64 begin_ts, end_ts, mul;
char float_buf[32] = {0};
float prediction_percentage = 0;
set_random_weights(xor->layer_list, modula);
// set_custom_weights(xor->layer_list);
while (batch_count < num_train_samples + num_test_samples) {
if (iter < num_train_samples / xor->batch_size) {
kml_atomic_bool_init(&(xor->state.is_training), true);
} else {
if (kml_atomic_bool_read(&(xor->state.is_training))) {
wait_for_draining_pipeline(&(xor->multithreading));
}
kml_atomic_bool_init(&(xor->state.is_training), false);
}
// get a random sample
random_idx = kml_random() % 4;
current_sample[0] = xor_inputs[random_idx][0];
current_sample[1] = xor_inputs[random_idx][1];
current_label = xor_outputs[random_idx];
xor->data.collect_input->vals
.f[mat_index(xor->data.collect_input, batch_count, 0)] =
current_sample[0];
xor->data.collect_input->vals
.f[mat_index(xor->data.collect_input, batch_count, 1)] =
current_sample[1];
xor->data.collect_output->vals
.f[mat_index(xor->data.collect_output, batch_count, 0)] =
current_label;
batch_count++;
if (batch_count == xor->batch_size) {
begin_ts = rdtsc();
set_data_async(&(xor->data), &(xor->multithreading));
end_ts = rdtsc();
mul = DIV_ROUND_CLOSEST(1000000L << 10, cpu_khz);
time_taken += mul_u64_u32_shr(end_ts - begin_ts, mul, 10);
batch_count = 0;
iter++;
}
if (iter == num_samples / xor->batch_size) {
wait_for_draining_pipeline(&(xor->multithreading));
kml_debug("test prediction percentage ");
prediction_percentage =
kml_atomic_int_read(&(xor->state.num_accurate_predictions));
prediction_percentage /=
(iter - num_train_samples / xor->batch_size) * xor->batch_size;
get_float_str(float_buf, 32, prediction_percentage);
kml_debug(float_buf);
kml_debug("\n");
/* printf( */
/* "test prediction percentage %f\n", */
/* (float)xor->state.num_accurate_predictions / */
/* ((iter - num_train_samples / xor->batch_size) *
* xor->batch_size)); */
break;
}
}
kml_debug("took nano seconds to execute: ");
get_float_str(float_buf, 32, time_taken);
kml_debug(float_buf);
kml_debug("\n");
// [printf("took %f seconds to execute \n", time_taken);
timing_sum += time_taken;
return (float)kml_atomic_int_read(&(xor->state.num_accurate_predictions)) /
((iter - num_train_samples / xor->batch_size) * xor->batch_size);
}
#ifdef DEBUG_KERNEL_MODULE
void debug_xor_net(xor_net* xor) {
int num_loops = 3, i;
matrix *input, *output;
set_custom_weights(xor->layer_list);
input = allocate_matrix(4, 2, FLOAT);
input->vals.f[mat_index(input, 0, 0)] = 0;
input->vals.f[mat_index(input, 0, 1)] = 0;
input->vals.f[mat_index(input, 1, 0)] = 0;
input->vals.f[mat_index(input, 1, 1)] = 1;
input->vals.f[mat_index(input, 2, 0)] = 1;
input->vals.f[mat_index(input, 2, 1)] = 0;
input->vals.f[mat_index(input, 3, 0)] = 1;
input->vals.f[mat_index(input, 3, 1)] = 1;
output = allocate_matrix(4, 1, FLOAT);
output->vals.f[mat_index(output, 0, 0)] = 0;
output->vals.f[mat_index(output, 1, 0)] = 1;
output->vals.f[mat_index(output, 2, 0)] = 1;
output->vals.f[mat_index(output, 3, 0)] = 0;
xor->data.input = input;
xor->data.output = output;
for (i = 0; i < num_loops; i++) {
kml_debug("+++++++++++++++++++++ new iteration\n");
xor_net_train(xor);
}
kml_debug("done");
}
#endif
void xor_net_kernel_test(void) {
int num_run = 100;
char float_buf[32] = {0};
xor_net* xor = build_xor_net(0.01, 4, 0.9, 2);
float current_acc;
int i;
kernel_fpu_begin();
current_acc = 0;
xor->check_correctness = &xor_example_check_correction;
for (i = 0; i < num_run; i++) {
current_acc = simulation(xor);
reset_xor_net(xor);
iter = 0;
acc_sum += current_acc;
}
// debug_xor_net(xor);
kml_debug("\nResults:\n");
kml_debug("average accuracy: ");
get_float_str(float_buf, 32, acc_sum / num_run);
kml_debug(float_buf);
kml_debug("\n");
kml_debug("average timing per iteration: ");
get_float_str(float_buf, 32, timing_sum / num_run * 1000);
kml_debug(float_buf);
kml_debug(" ms\n");
/* printf("\nResults:\n"); */
/* printf("average accuracy: %f \n", acc_sum / num_run); */
/* printf("average timing per iteration: %f ms \n", timing_sum / num_run *
* 1000); */
clean_xor_net(xor);
kernel_fpu_end();
}
static int __init kml_init(void) {
/* readahead_net* readahead; */
/* kernel_fpu_begin(); */
/* readahead = build_readahead_net(0.01, 1, 0.9, 5); */
/* kml_atomic_bool_init(&(readahead->state.is_training), false); */
/* set_weights_biases_from_file(readahead->layer_list->layer_list_head, */
/* "/home/umit/research/kernel-ml/kml/" */
/* "results_evaluation/nn_arch_data/linear0_w.csv",
*/
/* "/home/umit/research/kernel-ml/kml/" */
/* "results_evaluation/nn_arch_data/" */
/* "linear0_bias.csv"); */
/* set_weights_biases_from_file(readahead->layer_list->layer_list_tail, */
/* "/home/umit/research/kernel-ml/kml/" */
/* "results_evaluation/nn_arch_data/linear1_w.csv",
*/
/* "/home/umit/research/kernel-ml/kml/" */
/* "results_evaluation/nn_arch_data/" */
/* "linear1_bias.csv"); */
/* clean_readahead_net(readahead); */
/* kernel_fpu_end(); */
return 0;
}
#endif
static void __exit kml_exit(void) {}
module_init(kml_init);
module_exit(kml_exit);