-
Notifications
You must be signed in to change notification settings - Fork 3
/
test_training_inat_dirmixe.py
633 lines (494 loc) · 23.7 KB
/
test_training_inat_dirmixe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
import argparse
import os
import torch
from tqdm import tqdm
from pathlib import Path
import data_loader.data_loaders as module_data
import model.loss as module_loss
import model.metric as module_metric
import model.model as module_arch
import numpy as np
from parse_config import ConfigParser
import torch.nn.functional as F
import torch
import random
import numpy as np
import os, sys
from torchvision import datasets, transforms
from torch.utils.data import DataLoader, Dataset, Sampler
from base import BaseDataLoader
from PIL import Image
from PIL import ImageFilter
from torch.backends import cudnn
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class AverageMeters(object):
def __init__(self, size):
self.meters = [AverageMeter(i) for i in range(size)]
def update(self, idxs, vals):
for i, v in zip(idxs, vals):
self.meters[i].update(v)
def get_avgs(self):
return np.array([m.avg for m in self.meters])
def get_sums(self):
return np.array([m.sum for m in self.meters])
def get_cnts(self):
return np.array([m.count for m in self.meters])
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
class BalancedSampler(Sampler):
def __init__(self, buckets, retain_epoch_size=False):
for bucket in buckets:
random.shuffle(bucket)
self.bucket_num = len(buckets)
self.buckets = buckets
self.bucket_pointers = [0 for _ in range(self.bucket_num)]
self.retain_epoch_size = retain_epoch_size
def __iter__(self):
count = self.__len__()
while count > 0:
yield self._next_item()
count -= 1
def _next_item(self):
bucket_idx = random.randint(0, self.bucket_num - 1)
bucket = self.buckets[bucket_idx]
item = bucket[self.bucket_pointers[bucket_idx]]
self.bucket_pointers[bucket_idx] += 1
if self.bucket_pointers[bucket_idx] == len(bucket):
self.bucket_pointers[bucket_idx] = 0
random.shuffle(bucket)
return item
def __len__(self):
if self.retain_epoch_size:
return sum([len(bucket) for bucket in self.buckets]) # Acrually we need to upscale to next full batch
else:
return max([len(bucket) for bucket in self.buckets]) * self.bucket_num # Ensures every instance has the chance to be visited in an epoch
class GaussianBlur(object):
"""Gaussian blur augmentation in SimCLR https://arxiv.org/abs/2002.05709"""
def __init__(self, sigma=[.1, 2.]):
self.sigma = sigma
def __call__(self, x):
sigma = random.uniform(self.sigma[0], self.sigma[1])
x = x.filter(ImageFilter.GaussianBlur(radius=sigma))
return x
class LT_Dataset(Dataset):
def __init__(self, root, txt, transform=None):
self.img_path = []
self.labels = []
self.transform = transform
with open(txt) as f:
for line in f:
self.img_path.append(os.path.join(root, line.split()[0]))
self.labels.append(int(line.split()[1]))
self.targets = self.labels # Sampler needs to use targets
def __len__(self):
return len(self.labels)
def __getitem__(self, index):
path = self.img_path[index]
label = self.labels[index]
with open(path, 'rb') as f:
sample = Image.open(f).convert('RGB')
if self.transform is not None:
sample = self.transform(sample)
# return sample, label, path
return sample, label
class TwoCropsTransform:
"""Take two random crops of one image as the query and key."""
def __init__(self, base_transform):
self.base_transform = base_transform
def __call__(self, x):
q = self.base_transform(x)
k = self.base_transform(x)
return [q, k]
class iNaturalistDataLoader(DataLoader):
"""
iNaturalist Data Loader
"""
def __init__(self, data_dir, batch_size, shuffle=True, num_workers=1, training=True, balanced=False, retain_epoch_size=True, train_txt= './data_txt/iNaturalist/iNaturalist18_train.txt',
eval_txt= './data_txt/iNaturalist/iiNaturalist18_val.txt'):
train_trsfm = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomApply([
transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)
], p=0.8),
transforms.RandomGrayscale(p=0.2),
transforms.RandomApply([GaussianBlur([.1, 2.])], p=0.5),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.466, 0.471, 0.380], [0.195, 0.194, 0.192])
])
test_trsfm = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.466, 0.471, 0.380], [0.195, 0.194, 0.192])
])
if training:
dataset = LT_Dataset(data_dir, train_txt , train_trsfm)
val_dataset = LT_Dataset(data_dir, eval_txt, test_trsfm)
else: # test
dataset = LT_Dataset(data_dir, eval_txt, train_trsfm)
train_dataset = LT_Dataset(data_dir, eval_txt, transform=TwoCropsTransform(train_trsfm))
val_dataset = LT_Dataset(data_dir, eval_txt, test_trsfm)
self.dataset = dataset
self.train_dataset = train_dataset
self.val_dataset = val_dataset
self.n_samples = len(self.dataset)
num_classes = 8142
cls_num_list = [0] * num_classes
for label in dataset.targets:
cls_num_list[label] += 1
self.cls_num_list = cls_num_list
if balanced:
if training:
buckets = [[] for _ in range(num_classes)]
for idx, label in enumerate(dataset.targets):
buckets[label].append(idx)
sampler = BalancedSampler(buckets, retain_epoch_size)
shuffle = False
else:
print("Test set will not be evaluated with balanced sampler, nothing is done to make it balanced")
else:
sampler = None
self.shuffle = shuffle
self.init_kwargs = {
'batch_size': batch_size,
'num_workers': num_workers
}
super().__init__(dataset=self.dataset, **self.init_kwargs, sampler=sampler) # Note that sampler does not apply to validation set
def train_set(self):
return DataLoader(dataset=self.train_dataset, shuffle=True, **self.init_kwargs)
def test_set(self):
return DataLoader(dataset=self.val_dataset, shuffle=False, **self.init_kwargs)
class DirichletImbalanceiNaturalist(Dataset):
def __init__(self, root, train_cls_num_list, imb_type='exp', imb_factor=0.01, train=True,
transform=None, target_transform=None, download=False, reverse=False,
txt='data_txt/iNaturalist18/iNaturalist18_val.txt'):
self.img_path = []
self.labels = []
self.transform = transform
with open(txt) as f:
for line in f:
self.img_path.append(os.path.join(root, line.split()[0]))
self.labels.append(int(line.split()[1]))
self.targets = self.labels # Sampler needs to use targets
cls_num = 8142
img_num_per_cls = self.get_img_per_cls(cls_num, imb_type, imb_factor, reverse, train_cls_num_list)
self.gen_imbalanced_data(img_num_per_cls)
def __len__(self):
return len(self.labels)
def __getitem__(self, index):
path = self.img_path[index]
label = self.labels[index]
with open(path, 'rb') as f:
sample = Image.open(f).convert('RGB')
if self.transform is not None:
sample = self.transform(sample)
# return sample, label, path
return sample, label
def get_img_per_cls(self, cls_num, imb_type, imb_factor, reverse, train_cls_num_list):
img_max = len(self.img_path) / cls_num
img_num_per_cls = []
if imb_type == 'exp':
for cls_idx in range(cls_num):
if reverse:
num = img_max * (imb_factor**((cls_num - 1 - cls_idx) / (cls_num - 1.0)))
img_num_per_cls.append(int(num))
else:
num = img_max * (imb_factor**(cls_idx / (cls_num - 1.0)))
img_num_per_cls.append(int(num))
elif imb_type == 'step':
for cls_idx in range(cls_num // 2):
img_num_per_cls.append(int(img_max))
for cls_idx in range(cls_num // 2):
img_num_per_cls.append(int(img_max * imb_factor))
else:
img_num_per_cls.extend([int(img_max)] * cls_num)
sorted_idx = np.argsort(train_cls_num_list)
sorted_idx = sorted_idx[::-1]
cls_num_list = [0] * cls_num
for i in range(len(cls_num_list)):
cls_num_list[sorted_idx[i]] = img_num_per_cls[i]
alpha = cls_num_list
alpha = [float(x) for x in alpha]
for i in range(len(alpha)):
alpha[i] += (np.random.random() - 0.5) * 0.1 * alpha[i]
alpha[i] = max(alpha[i], 1e-7)
alpha_norm = sum(alpha)
alpha = [x * 100000 / alpha_norm for x in alpha]
img_num_per_cls = np.random.dirichlet(alpha)
pro_max = max(img_num_per_cls)
img_num_per_cls = [max(int(x / pro_max * img_max), 0) for x in img_num_per_cls]
return img_num_per_cls
def gen_imbalanced_data(self, img_num_per_cls):
new_data = []
new_targets = []
targets_np = np.array(self.labels, dtype=np.int64)
classes = np.unique(targets_np)
# np.random.shuffle(classes)
self.num_per_cls_dict = dict()
for the_class, the_img_num in zip(classes, img_num_per_cls):
self.num_per_cls_dict[the_class] = the_img_num
idx = np.where(targets_np == the_class)[0]
np.random.shuffle(idx)
selec_idx = idx[:the_img_num]
# new_data.append(self.img_path[selec_idx, ...])
new_data.extend([self.img_path[i] for i in selec_idx])
new_targets.extend([the_class, ] * the_img_num)
# new_data = np.vstack(new_data)
self.img_path = new_data
self.labels = new_targets
def get_cls_num_list(self):
cls_num_list = []
for i in range(self.cls_num):
cls_num_list.append(self.num_per_cls_dict[i])
return cls_num_list
class DirichletImbalanceiNaturalistLoader(DataLoader):
"""
Imbalance Cifar100 Data Loader
"""
def __init__(self, data_dir, batch_size, shuffle=True, num_workers=1, training=True, balanced=False, retain_epoch_size=True, imb_type='exp', imb_factor=0.01, test_imb_factor=0, reverse=False, train_txt='data_txt/iNaturalist18/iNaturalist18_train.txt'):
train_trsfm = transforms.Compose([
transforms.RandomResizedCrop(224, scale=(0.2, 1.)),
transforms.RandomApply([
transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)
], p=0.8),
transforms.RandomGrayscale(p=0.2),
transforms.RandomApply([GaussianBlur([.1, 2.])], p=0.5),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
test_trsfm = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
dataset = LT_Dataset(data_dir, train_txt, train_trsfm)
num_classes = len(np.unique(dataset.targets))
assert num_classes == 8142
cls_num_list = [0] * num_classes
for label in dataset.targets:
cls_num_list[label] += 1
self.cls_num_list = cls_num_list
train_dataset = DirichletImbalanceiNaturalist(data_dir, self.cls_num_list, train=False, download=True, transform= TwoCropsTransform(train_trsfm), imb_type=imb_type, imb_factor=test_imb_factor, reverse=reverse)
val_dataset = DirichletImbalanceiNaturalist(data_dir, self.cls_num_list, train=False, download=True, transform=test_trsfm, imb_type=imb_type, imb_factor=test_imb_factor, reverse=reverse)
self.dataset = dataset
self.train_dataset = train_dataset
self.val_dataset = val_dataset
self.shuffle = shuffle
self.init_kwargs = {
'batch_size': batch_size,
'num_workers': num_workers
}
super().__init__(dataset=self.dataset, **self.init_kwargs) # Note that sampler does not apply to validation set
def train_set(self):
return DataLoader(dataset=self.train_dataset, shuffle=True, **self.init_kwargs)
def test_set(self):
return DataLoader(dataset=self.val_dataset, shuffle=False, **self.init_kwargs)
def mic_acc_cal(preds, labels):
if isinstance(labels, tuple):
assert len(labels) == 3
targets_a, targets_b, lam = labels
acc_mic_top1 = (lam * preds.eq(targets_a.data).cpu().sum().float() \
+ (1 - lam) * preds.eq(targets_b.data).cpu().sum().float()) / len(preds)
else:
acc_mic_top1 = (preds == labels).sum().item() / len(labels)
return acc_mic_top1
def main(config, args):
args = args.parse_args()
torch.manual_seed(args.seed)
cudnn.deterministic = True
cudnn.benchmark = False
logger = config.get_logger('test')
# build model architecture
model = config.init_obj('arch', module_arch)
# run training data here just for obtain indexs for head/medium/tail classes
train_data_loader = getattr(module_data, config['data_loader']['type'])(
config['data_loader']['args']['data_dir'],
batch_size=128,
training=True,
num_workers=8
)
train_cls_num_list = train_data_loader.cls_num_list
train_cls_num_list=torch.tensor(train_cls_num_list)
many_shot = train_cls_num_list > 100
few_shot =train_cls_num_list <20
medium_shot =~many_shot & ~few_shot
num_classes = config._config["arch"]["args"]["num_classes"]
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
logger.info('Loading checkpoint: {} ...'.format(config.resume))
checkpoint = torch.load(config.resume)
state_dict = checkpoint['state_dict']
if config['n_gpu'] > 1:
model = torch.nn.DataParallel(model)
model.load_state_dict(state_dict)
fix_numpy_seed(args.seed)
# prepare model for testing
model = model.to(device)
weight_record_list=[]
performance_record_list=[]
distrb = {
'uniform': (1, False),
'forward': (args.ir, False),
'backward': (args.ir, True)
}
test_distribution_set = ['uniform', 'forward', 'backward']
trials = 9
idx_list = []
for i in range(trials):
idx = i // 3
idx_list.append(idx)
test_distribution = test_distribution_set[idx]
print(test_distribution)
data_loader = DirichletImbalanceiNaturalistLoader(
config['data_loader']['args']['data_dir'],
batch_size=128,
shuffle=False,
training=False,
num_workers=8,
test_imb_factor=distrb[test_distribution][0],
reverse=distrb[test_distribution][1]
)
train_data_loader= data_loader.train_set()
valid_data_loader = data_loader.test_set()
num_classes = config._config["arch"]["args"]["num_classes"]
aggregation_weight = torch.nn.Parameter(torch.FloatTensor(3), requires_grad=True)
aggregation_weight.data.fill_(1/3)
optimizer = config.init_obj('optimizer', torch.optim, [aggregation_weight])
for k in range(config["epochs"]):
weight_record = test_training(train_data_loader, config, model, aggregation_weight, optimizer, args)
if weight_record[0]<0.05 or weight_record[1]<0.05 or weight_record[2]<0.05:
break
print("Aggregation weight: Expert 1 is {0:.2f}, Expert 2 is {1:.2f}, Expert 3 is {2:.2f}".format(weight_record[0], weight_record[1], weight_record[2]))
weight_record_list.append(weight_record)
record = test_validation(valid_data_loader, model, num_classes, aggregation_weight, device, many_shot, medium_shot, few_shot)
performance_record_list.append(record)
print('\n')
print('='*25, ' Final results ', '='*25)
print('\n')
print('Top-1 accuracy on many-shot, medium-shot, few-shot and all classes:')
for i in range(trials):
idx = idx_list[i]
print(test_distribution_set[idx]+'\t')
print(*performance_record_list[i])
print('\n')
print('Aggregation weights of three experts:')
for i in range(trials):
idx = idx_list[i]
print(test_distribution_set[idx]+'\t')
print(*weight_record_list[i])
def test_training(train_data_loader, config, model, aggregation_weight, optimizer, args):
model.eval()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
losses = AverageMeter('Loss', ':.4e')
progress = ProgressMeter(
len(train_data_loader),
[losses])
cos = torch.nn.CosineSimilarity(dim=1, eps=1e-6)
for i, (data, _) in enumerate(tqdm(train_data_loader)):
data[0] = data[0].to(device)
data[1] = data[1].to(device)
output0 = model(data[0])
output1 = model(data[1])
expert1_logits_output0 = output0['logits'][:,0,:]
expert2_logits_output0 = output0['logits'][:,1,:]
expert3_logits_output0 = output0['logits'][:,2,:]
expert1_logits_output1 = output1['logits'][:,0,:]
expert2_logits_output1 = output1['logits'][:,1,:]
expert3_logits_output1 = output1['logits'][:,2,:]
aggregation_softmax = torch.nn.functional.softmax(aggregation_weight) # softmax for normalization
aggregation_output0 = aggregation_softmax[0].cuda() * expert1_logits_output0 + aggregation_softmax[1].cuda() * expert2_logits_output0 + aggregation_softmax[2].cuda() * expert3_logits_output0
aggregation_output1 = aggregation_softmax[0].cuda() * expert1_logits_output1 + aggregation_softmax[1].cuda() * expert2_logits_output1 + aggregation_softmax[2].cuda() * expert3_logits_output1
softmax_aggregation_output0 = F.softmax(aggregation_output0, dim=1)
softmax_aggregation_output1 = F.softmax(aggregation_output1, dim=1)
# SSL loss: similarity maxmization
cos_similarity = cos(softmax_aggregation_output0, softmax_aggregation_output1).mean()
ssl_loss = cos_similarity
# Entropy regularizer: entropy maxmization
entropy_loss = - torch.mean(softmax_aggregation_output0 * torch.log(softmax_aggregation_output0)) - torch.mean(softmax_aggregation_output1 * torch.log(softmax_aggregation_output1))
loss = -ssl_loss - 0.01 * entropy_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
losses.update(ssl_loss, data[0].shape[0])
aggregation_softmax = torch.nn.functional.softmax(aggregation_weight, dim=0).detach().cpu().numpy()
return np.round(aggregation_softmax[0], decimals=2), np.round(aggregation_softmax[1], decimals=2), np.round(aggregation_softmax[2], decimals=2)
def test_validation(data_loader, model, num_classes, aggregation_weight, device, many_shot, medium_shot, few_shot):
model.eval()
aggregation_weight.requires_grad = False
confusion_matrix = torch.zeros(num_classes, num_classes).cuda()
total_logits = torch.empty((0, num_classes)).cuda()
total_labels = torch.empty(0, dtype=torch.long).cuda()
with torch.no_grad():
for i, (data, target) in enumerate(tqdm(data_loader)):
data, target = data.to(device), target.to(device)
output = model(data)
expert1_logits_output = output['logits'][:,0,:]
expert2_logits_output = output['logits'][:,1,:]
expert3_logits_output = output['logits'][:,2,:]
aggregation_softmax = torch.nn.functional.softmax(aggregation_weight) # softmax for normalization
aggregation_output = aggregation_softmax[0] * expert1_logits_output + aggregation_softmax[1] * expert2_logits_output + aggregation_softmax[2] * expert3_logits_output
for t, p in zip(target.view(-1), aggregation_output.argmax(dim=1).view(-1)):
confusion_matrix[t.long(), p.long()] += 1
total_logits = torch.cat((total_logits, aggregation_output))
total_labels = torch.cat((total_labels, target))
probs, preds = F.softmax(total_logits.detach(), dim=1).max(dim=1)
# Calculate the overall accuracy and F measurement
eval_acc_mic_top1= mic_acc_cal(preds[total_labels != -1],
total_labels[total_labels != -1])
acc_per_class = confusion_matrix.diag()/confusion_matrix.sum(1)
acc = acc_per_class.cpu().numpy()
many_shot_acc = acc[many_shot].mean()
medium_shot_acc = acc[medium_shot].mean()
few_shot_acc = acc[few_shot].mean()
print("Many-shot {0:.2f}, Medium-shot {1:.2f}, Few-shot {2:.2f}, All {3:.2f}".format(many_shot_acc * 100, medium_shot_acc * 100,
few_shot_acc * 100, eval_acc_mic_top1* 100))
return np.round(many_shot_acc * 100, decimals=2), np.round(medium_shot_acc * 100, decimals=2), np.round(few_shot_acc * 100, decimals=2), np.round(eval_acc_mic_top1 * 100, decimals=2)
def fix_numpy_seed(seed):
random.seed(seed)
np.random.seed(seed)
if __name__ == '__main__':
default_ir = 1 / 3
args = argparse.ArgumentParser(description='PyTorch Template')
args.add_argument('-c', '--config', default=None, type=str,
help='config file path (default: None)')
args.add_argument('-r', '--resume', default=None, type=str,
help='path to latest checkpoint (default: None)')
args.add_argument('-d', '--device', default=None, type=str,
help='indices of GPUs to enable (default: all)')
args.add_argument('--epochs', default=1, type=int,
help='indices of GPUs to enable (default: all)')
args.add_argument('--ir', default=default_ir, type=float)
args.add_argument('--seed', default=0, type=int)
config = ConfigParser.from_args(args, test=True)
main(config, args)