forked from QuantConnect/Lean
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDisplacedMovingAverageRibbon.py
108 lines (98 loc) · 4.47 KB
/
DisplacedMovingAverageRibbon.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from clr import AddReference
AddReference("System")
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Common")
AddReference("QuantConnect.Indicators")
from System import *
from QuantConnect import *
from QuantConnect.Indicators import *
from QuantConnect.Data import *
from QuantConnect.Data.Market import *
from QuantConnect.Algorithm import *
import numpy as np
from datetime import datetime
### <summary>
### Constructs a displaced moving average ribbon and buys when all are lined up, liquidates when they all line down
### Ribbons are great for visualizing trends
### Signals are generated when they all line up in a paricular direction
### A buy signal is when the values of the indicators are increasing (from slowest to fastest).
### A sell signal is when the values of the indicators are decreasing (from slowest to fastest).
### </summary>
### <meta name="tag" content="charting" />
### <meta name="tag" content="plotting indicators" />
### <meta name="tag" content="indicators" />
### <meta name="tag" content="indicator classes" />
class DisplacedMovingAverageRibbon(QCAlgorithm):
# Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.
def Initialize(self):
self.SetStartDate(2009, 1, 1) #Set Start Date
self.SetEndDate(2015, 1, 1) #Set End Date
self.spy = self.AddEquity("SPY", Resolution.Daily).Symbol
count = 6
offset = 5
period = 15
self.ribbon = []
# define our sma as the base of the ribbon
self.sma = SimpleMovingAverage(period)
for x in range(count):
# define our offset to the zero sma, these various offsets will create our 'displaced' ribbon
delay = Delay(offset*(x+1))
# define an indicator that takes the output of the sma and pipes it into our delay indicator
delayedSma = IndicatorExtensions.Of(delay, self.sma)
# register our new 'delayedSma' for automaic updates on a daily resolution
self.RegisterIndicator(self.spy, delayedSma, Resolution.Daily)
self.ribbon.append(delayedSma)
self.previous = datetime.min
# plot indicators each time they update using the PlotIndicator function
for i in self.ribbon:
self.PlotIndicator("Ribbon", i)
# OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
def OnData(self, data):
if data[self.spy] is None: return
# wait for our entire ribbon to be ready
if not all(x.IsReady for x in self.ribbon): return
# only once per day
if self.previous.date() == self.Time.date(): return
self.Plot("Ribbon", "Price", data[self.spy].Price)
# check for a buy signal
values = [x.Current.Value for x in self.ribbon]
holding = self.Portfolio[self.spy]
if (holding.Quantity <= 0 and self.IsAscending(values)):
self.SetHoldings(self.spy, 1.0)
elif (holding.Quantity > 0 and self.IsDescending(values)):
self.Liquidate(self.spy)
self.previous = self.Time
# Returns true if the specified values are in ascending order
def IsAscending(self, values):
last = None
for val in values:
if last is None:
last = val
continue
if last < val:
return False
last = val
return True
# Returns true if the specified values are in Descending order
def IsDescending(self, values):
last = None
for val in values:
if last is None:
last = val
continue
if last > val:
return False
last = val
return True