-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot.py
91 lines (75 loc) · 2.57 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
"""
Please note, this code is only for python 3+. If you are using python 2+, please modify the code accordingly.
"""
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import datetime,time
def add_layer(inputs, in_size, out_size, activation_function=None):
Weights = tf.Variable(tf.random_normal([in_size, out_size]))
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
Wx_plus_b = tf.matmul(inputs, Weights) + biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs
# Make up some real data
'''
x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise
'''
data=pd.read_csv('h:\\tensorflowDLInSE\\data1.csv')
x_data=data['fre'].tolist()
x_data=np.array(x_data).reshape((1001,1))
y_data=data['mag'].tolist()
y_data=np.array(y_data).reshape((1001,1))
##plt.scatter(x_data, y_data)
##plt.show()
# define placeholder for inputs to network
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])
# add hidden layer
l1 = add_layer(xs, 1, 10, activation_function=tf.nn.sigmoid)
# add output layer
prediction = add_layer(l1, 10, 1, activation_function=None)
# the error between prediciton and real data
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction), reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.03).minimize(loss)
# important step
init = tf.global_variables_initializer()
sess= tf.Session()
sess.run(init)
# plot the real data
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(x_data, y_data)
plt.ion()
plt.show()
step_num=0
starttime=datetime.datetime.now()
batch_size=300
all_size=1001
for i in range(100000):
# training
start_index=(i*batch_size)%all_size
end_index=min((start_index+batch_size),all_size)
sess.run(train_step, feed_dict={xs: x_data[start_index:end_index],
ys: y_data[start_index:end_index]})
if i % 5000== 0:
# to visualize the result and improvement
step_num+=1
try:
ax.lines.remove(lines[0])
except Exception:
pass
prediction_value = sess.run(prediction, feed_dict={xs: x_data})
# plot the prediction
print(step_num)
lines = ax.plot(x_data, prediction_value, 'r-', lw=5)
plt.pause(0.1)
endtime=datetime.datetime.now()
print('耗时: ',(endtime-starttime).seconds,' 秒')
#need to add a method which can be used to calculate diff curves