-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtestfunction.py
65 lines (52 loc) · 2.01 KB
/
testfunction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import tensorflow as tf
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
def add_layer(inputs, in_size, out_size, activation_function=None):
Weights = tf.Variable(tf.random_normal([in_size, out_size]))
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
Wx_plus_b = tf.matmul(inputs, Weights) + biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs
'''
x_data = np.array([[1,2],[2,1]])
y_data=[[7,7,8,156],[50,70,80,7]]
'''
def return_in_out_data(input_data_path,output_data_path):
x_data = pd.read_csv(input_data_path).values
y_data = pd.read_csv(output_data_path).values.T
return x_data,y_data
#x_x=np.linspace(1,3,1001).reshape((1,1001))
x_data ,y_data= return_in_out_data('h:\\tensorflowDLInSE\\preprocessingdata\\x_data.csv',
'h:\\tensorflowDLInSE\\preprocessingdata\\y_data.csv')
'''
x_x=np.linspace(1,3,1001).reshape((1,1001))
data=pd.read_csv('h:\\tensorflowDLInSE\\data2.csv')
x_data=[[300,120,300]]
y_data=data['mag'].tolist()
y_data=np.array(y_data).reshape((1,1001))
#y_data[0]=y_d
'''
xs=tf.placeholder(tf.float32,[None,7])
ys=tf.placeholder(tf.float32,[None,1001])
L1= add_layer(xs,7,10,activation_function=tf.nn.sigmoid)
predition=add_layer(L1,10,1001,activation_function=None)
loss = tf.reduce_mean((tf.square(predition-ys)))
train=tf.train.GradientDescentOptimizer(0.1).minimize(loss)
init = tf.global_variables_initializer()
saver=tf.train.Saver()
sess=tf.Session()
sess.run(init)
for i in range (10000):
sess.run(train,feed_dict={xs:x_data,ys:y_data})
if i %500 ==0:
print(sess.run(predition,feed_dict={xs:[[300,120,300,60,10,10,90]]}))
#aa=sess.run(predition,feed_dict={xs:[[300,120,300]]}).reshape((1001,1))
#np.savetxt("H:\pre_values1.txt",aa)
saver.save(sess,"mynetwork\my_net.ckpt")
aa=sess.run(predition,feed_dict={xs:[[300,120,300,60,10,10,90]]}).reshape((1001,1))
np.savetxt("H:\pre_values1.txt",aa)
print('Its ok!')