Skip to content

Latest commit

 

History

History
55 lines (47 loc) · 1.37 KB

Day 11 K-NN.md

File metadata and controls

55 lines (47 loc) · 1.37 KB

K-Nearest Neighbors (K-NN)

The DataSet | Social Network

Importing the libraries

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

Importing the dataset

dataset = pd.read_csv('Social_Network_Ads.csv')
X = dataset.iloc[:, [2, 3]].values
y = dataset.iloc[:, 4].values

Splitting the dataset into the Training set and Test set

from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)

Feature Scaling

from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

Fitting K-NN to the Training set

from sklearn.neighbors import KNeighborsClassifier
classifier = KNeighborsClassifier(n_neighbors = 5, metric = 'minkowski', p = 2)
classifier.fit(X_train, y_train)

Predicting the Test set results

y_pred = classifier.predict(X_test)

Making the Confusion Matrix

from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)