K-Nearest Neighbors (K-NN)
The DataSet | Social Network
import numpy as np
import matplotlib .pyplot as plt
import pandas as pd
dataset = pd .read_csv ('Social_Network_Ads.csv' )
X = dataset .iloc [:, [2 , 3 ]].values
y = dataset .iloc [:, 4 ].values
Splitting the dataset into the Training set and Test set
from sklearn .cross_validation import train_test_split
X_train , X_test , y_train , y_test = train_test_split (X , y , test_size = 0.25 , random_state = 0 )
from sklearn .preprocessing import StandardScaler
sc = StandardScaler ()
X_train = sc .fit_transform (X_train )
X_test = sc .transform (X_test )
Fitting K-NN to the Training set
from sklearn .neighbors import KNeighborsClassifier
classifier = KNeighborsClassifier (n_neighbors = 5 , metric = 'minkowski' , p = 2 )
classifier .fit (X_train , y_train )
Predicting the Test set results
y_pred = classifier .predict (X_test )
Making the Confusion Matrix
from sklearn .metrics import confusion_matrix
cm = confusion_matrix (y_test , y_pred )