forked from HarryVolek/PyTorch_Speaker_Verification
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVAD_segments.py
executable file
·153 lines (138 loc) · 5.68 KB
/
VAD_segments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Dec 18 16:22:41 2018
@author: Harry
Modified from https://github.com/wiseman/py-webrtcvad/blob/master/example.py
"""
import collections
import contextlib
import numpy as np
import sys
import librosa
import wave
import webrtcvad
from hparam import hparam as hp
def read_wave(path, sr):
"""Reads a .wav file.
Takes the path, and returns (PCM audio data, sample rate).
Assumes sample width == 2
"""
with contextlib.closing(wave.open(path, 'rb')) as wf:
num_channels = wf.getnchannels()
assert num_channels == 1
sample_width = wf.getsampwidth()
assert sample_width == 2
sample_rate = wf.getframerate()
assert sample_rate in (8000, 16000, 32000, 48000)
pcm_data = wf.readframes(wf.getnframes())
data, _ = librosa.load(path, sr)
assert len(data.shape) == 1
assert sr in (8000, 16000, 32000, 48000)
return data, pcm_data
class Frame(object):
"""Represents a "frame" of audio data."""
def __init__(self, bytes, timestamp, duration):
self.bytes = bytes
self.timestamp = timestamp
self.duration = duration
def frame_generator(frame_duration_ms, audio, sample_rate):
"""Generates audio frames from PCM audio data.
Takes the desired frame duration in milliseconds, the PCM data, and
the sample rate.
Yields Frames of the requested duration.
"""
n = int(sample_rate * (frame_duration_ms / 1000.0) * 2)
offset = 0
timestamp = 0.0
duration = (float(n) / sample_rate) / 2.0
while offset + n < len(audio):
yield Frame(audio[offset:offset + n], timestamp, duration)
timestamp += duration
offset += n
def vad_collector(sample_rate, frame_duration_ms,
padding_duration_ms, vad, frames):
"""Filters out non-voiced audio frames.
Given a webrtcvad.Vad and a source of audio frames, yields only
the voiced audio.
Uses a padded, sliding window algorithm over the audio frames.
When more than 90% of the frames in the window are voiced (as
reported by the VAD), the collector triggers and begins yielding
audio frames. Then the collector waits until 90% of the frames in
the window are unvoiced to detrigger.
The window is padded at the front and back to provide a small
amount of silence or the beginnings/endings of speech around the
voiced frames.
Arguments:
sample_rate - The audio sample rate, in Hz.
frame_duration_ms - The frame duration in milliseconds.
padding_duration_ms - The amount to pad the window, in milliseconds.
vad - An instance of webrtcvad.Vad.
frames - a source of audio frames (sequence or generator).
Returns: A generator that yields PCM audio data.
"""
num_padding_frames = int(padding_duration_ms / frame_duration_ms)
# We use a deque for our sliding window/ring buffer.
ring_buffer = collections.deque(maxlen=num_padding_frames)
# We have two states: TRIGGERED and NOTTRIGGERED. We start in the
# NOTTRIGGERED state.
triggered = False
voiced_frames = []
for frame in frames:
is_speech = vad.is_speech(frame.bytes, sample_rate)
if not triggered:
ring_buffer.append((frame, is_speech))
num_voiced = len([f for f, speech in ring_buffer if speech])
# If we're NOTTRIGGERED and more than 90% of the frames in
# the ring buffer are voiced frames, then enter the
# TRIGGERED state.
if num_voiced > 0.9 * ring_buffer.maxlen:
triggered = True
start = ring_buffer[0][0].timestamp
# We want to yield all the audio we see from now until
# we are NOTTRIGGERED, but we have to start with the
# audio that's already in the ring buffer.
for f, s in ring_buffer:
voiced_frames.append(f)
ring_buffer.clear()
else:
# We're in the TRIGGERED state, so collect the audio data
# and add it to the ring buffer.
voiced_frames.append(frame)
ring_buffer.append((frame, is_speech))
num_unvoiced = len([f for f, speech in ring_buffer if not speech])
# If more than 90% of the frames in the ring buffer are
# unvoiced, then enter NOTTRIGGERED and yield whatever
# audio we've collected.
if num_unvoiced > 0.9 * ring_buffer.maxlen:
triggered = False
yield (start, frame.timestamp + frame.duration)
ring_buffer.clear()
voiced_frames = []
# If we have any leftover voiced audio when we run out of input,
# yield it.
if voiced_frames:
yield (start, frame.timestamp + frame.duration)
def VAD_chunk(aggressiveness, path):
audio, byte_audio = read_wave(path, hp.data.sr)
vad = webrtcvad.Vad(int(aggressiveness))
frames = frame_generator(20, byte_audio, hp.data.sr)
frames = list(frames)
times = vad_collector(hp.data.sr, 20, 200, vad, frames)
speech_times = []
speech_segs = []
for i, time in enumerate(times):
start = np.round(time[0],decimals=2)
end = np.round(time[1],decimals=2)
j = start
while j + .4 < end:
end_j = np.round(j+.4,decimals=2)
speech_times.append((j, end_j))
speech_segs.append(audio[int(j*hp.data.sr):int(end_j*hp.data.sr)])
j = end_j
else:
speech_times.append((j, end))
speech_segs.append(audio[int(j*hp.data.sr):int(end*hp.data.sr)])
return speech_times, speech_segs
if __name__ == '__main__':
speech_times, speech_segs = VAD_chunk(sys.argv[1], sys.argv[2])