-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmain.py
113 lines (95 loc) · 6.03 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import os
import time
import argparse
import torch
import torch.multiprocessing as mp
from trainer import BaseTrainer, AdvTrainer
from iterator import iter_main
# should be located outside of main function!
def worker(gpu, ngpus_per_node, args):
if args.adv:
print("running adv training...")
model = AdvTrainer(args)
else:
print("running base training...")
model = BaseTrainer(args)
model.make_model_env(gpu, ngpus_per_node)
model.make_run_env()
model.train()
def main(args):
# data loading before initializing model
pickled_folder = args.pickled_folder + "_{}_{}".format(args.bert_model, str(args.skip_no_ans))
if not os.path.exists(pickled_folder):
os.mkdir(pickled_folder)
file_num = iter_main(args)
args.num_classes = file_num
# make save and result directory
save_dir = os.path.join("./save", "{}_{}".format("adv" if args.adv else "base", time.strftime("%m%d%H%M")))
if not os.path.exists(save_dir):
os.makedirs(save_dir)
args.save_dir = save_dir
result_dir = os.path.join("./result", "{}_{}".format("adv" if args.adv else "base", time.strftime("%m%d%H%M")))
if not os.path.exists(result_dir):
os.makedirs(result_dir)
args.result_dir = result_dir
args.devices = [int(gpu) for gpu in args.devices.split('_')]
args.use_cuda = (args.use_cuda and torch.cuda.is_available())
args.distributed = (args.use_cuda and args.distributed)
ngpus_per_node = 0
if args.use_cuda:
ngpus_per_node = len(args.devices)
assert ngpus_per_node <= torch.cuda.device_count(), "GPU device number exceeds max capacity. select device ids correctly."
if args.distributed:
# Since we have ngpus_per_node processes per node, the total world_size
# needs to be adjusted accordingly
args.world_size = ngpus_per_node * args.world_size
# Use torch.multiprocessing.spawn to launch distributed processes: the
# main_worker process function
mp.spawn(worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
else:
worker(None, ngpus_per_node, args)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--debug", action="store_true", help="Debugging mode, taking only first 100 data")
parser.add_argument("--bert_model", default="bert-base-uncased", type=str, help="Bert model")
parser.add_argument("--max_seq_length", default=384, type=int, help="Max sequence length")
parser.add_argument("--max_query_length", default=64, type=int, help="Max query length")
parser.add_argument("--doc_stride", default=128, type=int, help="doc stride")
parser.add_argument("--batch_size", default=32, type=int, help="batch size")
parser.add_argument("--epochs", default=2, type=int, help="Number of epochs")
parser.add_argument("--start_epoch", default=0, type=int, help="starting epoch point")
parser.add_argument("--lr", default=3e-5, type=float, help="Learning rate")
parser.add_argument("--warmup_proportion", default=0.1, type=float, help="Warmup proportion")
parser.add_argument("--gradient_accumulation_steps", default=1, type=int, help="gradient_accumulation_steps")
parser.add_argument("--do_lower_case", action='store_true', default=True, help="Set this flag if you are using an uncased model.")
parser.add_argument("--use_cuda", action='store_true', help="use cuda or not")
parser.add_argument("--do_valid", action='store_true', help="do validation or not")
parser.add_argument("--freeze_bert", action="store_true", help="freeze bert parameters or not")
parser.add_argument("--train_folder", default="./data/train", type=str, help="path of training data file")
parser.add_argument("--dev_folder", default="./data/dev", type=str, help="path of training data file")
parser.add_argument("--pickled_folder", default="./pickled_data", type=str, help="path of saved pickle file")
parser.add_argument("--load_model", default=None, type=str, help="load model")
parser.add_argument("--skip_no_ans", action="store_true", help="whether to exclude no answer example")
parser.add_argument("--devices", default='0', type=str, help="gpu device ids to use, concat with '_', ex) '0_1_2_3'")
parser.add_argument("--workers", default=4, help="Number of processes(workers) per node."
"It should be equal to the number of gpu devices to use in one node")
parser.add_argument("--world_size", default=1,
help="Number of total workers. Initial value should be set to the number of nodes."
"Final value will be Num.nodes * Num.devices")
parser.add_argument("--rank", default=0, help="The priority rank of current node.")
parser.add_argument("--dist_backend", default="nccl",
help="Backend communication method. NCCL is used for DistributedDataParallel")
parser.add_argument("--dist_url", default="tcp://127.0.0.1:9999", help="DistributedDataParallel server")
parser.add_argument("--gpu", default=None, help="Manual setting of gpu device. If it is not None, all parallel processes are disabled")
parser.add_argument("--distributed", action="store_true", help="Use multiprocess distribution or not")
parser.add_argument("--random_seed", default=2019, help="Random state(seed)")
# For adversarial learning
parser.add_argument("--adv", action="store_true", help="Use adversarial training")
parser.add_argument("--dis_lambda", default=0.01, type=float, help="Importance of adversarial loss")
parser.add_argument("--hidden_size", default=768, type=int, help="Hidden size for discriminator")
parser.add_argument("--num_layers", default=3, type=int, help="Number of layers for discriminator")
parser.add_argument("--dropout", default=0.1, type=float, help="Dropout for discriminator")
parser.add_argument("--anneal", action="store_true")
parser.add_argument("--concat", action="store_true", help="Whether to use both cls and sep embedding")
args = parser.parse_args()
main(args)