-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
232 lines (173 loc) · 11.6 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import time
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
class Trainer():
def __init__(self, config,
g_builder, d_builder, cp_builder, zp_builder,
coord_handler, patch_handler):
self.config = config
self.g_builder = g_builder
self.d_builder = d_builder
self.cp_builder = cp_builder
self.zp_builder = zp_builder
self.coord_handler = coord_handler
self.patch_handler = patch_handler
# Vars for graph building
self.batch_size = self.config["train_params"]["batch_size"]
self.z_dim = self.config["model_params"]["z_dim"]
self.spatial_dim = self.config["model_params"]["spatial_dim"]
self.micro_patch_size = self.config["data_params"]["micro_patch_size"]
self.macro_patch_size = self.config["data_params"]["macro_patch_size"]
self.ratio_macro_to_micro = self.config["data_params"]["ratio_macro_to_micro"]
self.ratio_full_to_micro = self.config["data_params"]["ratio_full_to_micro"]
self.num_micro_compose_macro = self.config["data_params"]["num_micro_compose_macro"]
# Vars for training loop
self.exp_name = config["log_params"]["exp_name"]
self.epochs = float(self.config["train_params"]["epochs"])
self.num_batches = self.config["data_params"]["num_train_samples"] // self.batch_size
self.coordinate_system = self.config["data_params"]["coordinate_system"]
self.G_update_period = self.config["train_params"]["G_update_period"]
self.D_update_period = self.config["train_params"]["D_update_period"]
self.Q_update_period = self.config["train_params"]["Q_update_period"]
# Loss weights
self.code_loss_w = self.config["loss_params"]["code_loss_w"]
self.coord_loss_w = self.config["loss_params"]["coord_loss_w"]
self.gp_lambda = self.config["loss_params"]["gp_lambda"]
# Extrapolation parameters handling
self.num_extrap_steps = 0
self.weight_cliping_limit = 0.01
def _train_content_prediction_model(self):
return (self.Q_update_period>0) and (self.config["train_params"]["qlr"]>0)
def sample_prior(self):
return np.random.uniform(-1., 1., [self.batch_size, self.z_dim]).astype(np.float32)
def tile(self, a, dim, n_tile):
init_dim = a.size(dim)
repeat_idx = [1] * a.dim()
repeat_idx[dim] = n_tile
a = a.repeat(*(repeat_idx))
order_index = torch.LongTensor(np.concatenate([init_dim * np.arange(n_tile) + i for i in range(init_dim)]))
return torch.index_select(a, dim, order_index)
def _dup_z_for_macro(self, z):
# Duplicate with nearest neighbor, different to `tf.tile`.
ch = z.shape[-1]
repeat = self.num_micro_compose_macro
extend = torch.unsqueeze(z,1)
extend_dup = self.tile(extend, 1, repeat)
return extend_dup.view(-1, ch)
def calc_gradient_penalty(self):
""" Gradient Penalty for patches D """
# This is borrowed from https://github.com/kodalinaveen3/DRAGAN/blob/master/DRAGAN.ipynb
alpha = torch.FloatTensor(self.real_macro.size(0),1,1,1).uniform_(0., 1.)
alpha = alpha.expand(self.real_macro.size(0), self.real_macro.size(1), self.real_macro.size(2), self.real_macro.size(3))
interpolates = alpha*self.real_macro + ((1-alpha) * self.gen_macro)
disc_inter, _ = self.d_builder(interpolates, None, is_training=True)
disc_inter.unsqueeze_(1)
disc_inter.unsqueeze_(2)
disc_inter = disc_inter.type(torch.DoubleTensor)
interpolates.detach().type(torch.DoubleTensor).requires_grad_(True)
gradients = torch.autograd.grad(outputs=disc_inter, inputs=interpolates, grad_outputs= torch.ones(interpolates.size(), dtype=torch.float64), create_graph=True, allow_unused=True, retain_graph=True)[0]
slopes = torch.sqrt(torch.sum(torch.pow(gradients,2), 1))
gradient_penalty = torch.mean((slopes - 1.) ** 2).type(torch.DoubleTensor) * self.config["loss_params"]["gp_lambda"]
return gradient_penalty
def generate_full_image_cpu(self, z):
all_micro_patches = []
all_micro_coord = []
num_patches_x = self.ratio_full_to_micro[0] + self.num_extrap_steps * 2
num_patches_y = self.ratio_full_to_micro[1] + self.num_extrap_steps * 2
full_image = np.empty((z.shape[0],self.config["data_params"]["c_dim"],self.micro_patch_size[0]*num_patches_x,0))
for yy in range(num_patches_y):
rows_data = np.empty((z.shape[0],self.config["data_params"]["c_dim"],0,self.micro_patch_size[1]))
for xx in range(num_patches_x):
micro_coord_single = np.array([
self.coord_handler.euclidean_coord_int_full_to_float_micro(xx, num_patches_x, extrap_steps=self.num_extrap_steps),
self.coord_handler.euclidean_coord_int_full_to_float_micro(yy, num_patches_y, extrap_steps=self.num_extrap_steps),
])
micro_coord = np.tile(np.expand_dims(micro_coord_single, 0), [z.shape[0], 1])
generated_patch = self.g_builder(torch.tensor(z, dtype=torch.float64), torch.tensor(micro_coord, dtype=torch.float64), is_training=False)
rows_data = np.concatenate((rows_data, generated_patch.detach().numpy()), axis=2)
all_micro_patches.append(torch.Tensor.cpu(generated_patch).detach().numpy())
all_micro_coord.append(micro_coord)
full_image = np.concatenate((full_image, rows_data), axis=3)
all_micro_patches = np.concatenate(all_micro_patches, 0)
return all_micro_patches, full_image
def train(self, logger, real_images):
# Optimizers
self.g_optim = optim.Adam(self.g_builder.parameters(), lr=self.config["train_params"]["glr"], betas=[self.config["train_params"]["beta1"], self.config["train_params"]["beta2"]])
self.d_optim = optim.Adam(self.d_builder.parameters(), lr=self.config["train_params"]["dlr"], betas=[self.config["train_params"]["beta1"], self.config["train_params"]["beta2"]])
self.q_optim = optim.Adam(self.zp_builder.parameters(), lr=self.config["train_params"]["qlr"], betas=[self.config["train_params"]["beta1"], self.config["train_params"]["beta2"]])
z_fixed = self.sample_prior()
global_step = 0
start_time = time.time()
self.g_loss, self.d_loss, self.q_loss = 0, 0, 0
cur_epoch = int(global_step / self.num_batches)
cur_iter = global_step - cur_epoch * self.num_batches
self.g_optim.zero_grad()
self.d_optim.zero_grad()
while cur_epoch < 1000:
for cur_iter, data in enumerate(real_images):
print('iter : '+str(cur_iter))
# for p in self.d_builder.parameters():
# p.data.clamp_(-self.weight_cliping_limit, self.weight_cliping_limit)
image = data[0]
# Create data
z = torch.tensor(self.sample_prior())
macro_coord, micro_coord, y_angle_ratio = self.coord_handler.sample_coord()
micro_coord_fake = micro_coord
macro_coord_fake = macro_coord
micro_coord_real = micro_coord
macro_coord_real = macro_coord
# Crop real micro for visualization
self.real_micro = self.patch_handler.crop_micro_from_full_cpu(image, micro_coord_real[:, 0:1], micro_coord_real[:, 1:2])
self.real_macro = self.patch_handler.concat_micro_patches_cpu(self.real_micro, ratio_over_micro=self.ratio_macro_to_micro)
(self.disc_real, disc_real_h) = self.d_builder(self.real_macro, macro_coord_real, is_training=True)
self.c_real_pred = self.cp_builder(torch.unsqueeze(disc_real_h,1), is_training=True)
self.z_real_pred = self.zp_builder(torch.unsqueeze(disc_real_h,1), is_training=True)
# Fake part
z_dup_macro = self._dup_z_for_macro(z).clone().detach()
self.gen_micro = self.g_builder(z_dup_macro, micro_coord_fake, is_training=True)
self.gen_macro = self.patch_handler.concat_micro_patches_cpu(self.gen_micro, ratio_over_micro=self.ratio_macro_to_micro)
(self.disc_fake, disc_fake_h) = self.d_builder(self.gen_macro, macro_coord_fake, is_training=True)
self.c_fake_pred = self.cp_builder(torch.unsqueeze(disc_fake_h,1), is_training=True)
self.z_fake_pred = self.zp_builder(torch.unsqueeze(disc_fake_h,1), is_training=True)
self.macro_error = nn.MSELoss()(self.real_macro.type(torch.float64), self.gen_macro.type(torch.float64))
# Spatial consistency loss (reduce later)
self.coord_mse_real = self.coord_loss_w * nn.MSELoss()(torch.squeeze(torch.tensor(macro_coord_real).double()), torch.squeeze(self.c_real_pred).double())
self.coord_mse_fake = self.coord_loss_w * nn.MSELoss()(torch.squeeze(torch.tensor(macro_coord_fake).double()), torch.squeeze(self.c_fake_pred).double())
self.coord_mse_real = torch.mean(self.coord_mse_real)
self.coord_mse_fake = torch.mean(self.coord_mse_fake)
self.coord_loss = self.coord_mse_real + self.coord_mse_fake
# Content consistency loss
z_real = z.clone().detach().requires_grad_(True).type(torch.DoubleTensor).unsqueeze(1)
z_fake = self.z_fake_pred.clone().detach().requires_grad_(True).type(torch.DoubleTensor)
self.code_loss = self.code_loss_w * torch.mean(nn.L1Loss()(z_real, z_fake))
# Gradient penalty loss of WGAN-GP
gradient_penalty = self.calc_gradient_penalty()
self.gp_loss = gradient_penalty
# WGAN loss
self.adv_real = torch.mean(self.disc_real)
self.adv_fake = torch.mean(self.disc_fake)
self.d_adv_loss = -self.adv_real + self.adv_fake
self.g_adv_loss = -self.adv_fake #+ self.macro_error.type(torch.float64)
# Total loss
self.d_loss = self.d_adv_loss + self.gp_loss + self.coord_loss + self.code_loss
self.g_loss = self.g_adv_loss + self.coord_loss + self.code_loss
self.q_loss = self.g_adv_loss + self.code_loss
self.w_dist = torch.abs(self.adv_real - self.adv_fake)
print('Wasserstein Distance '+ str(self.w_dist))
self.d_loss.float().backward(retain_graph=True)
self.g_loss.float().backward(retain_graph=True)
self.d_optim.step()
self.d_optim.zero_grad()
self.g_optim.step()
self.g_optim.zero_grad()
# Log
time_elapsed = time.time() - start_time
print("[{}] [Epoch: {}; {:4d}/{:4d}; global_step:{}] elapsed: {:.4f}".format(
self.exp_name, cur_epoch, cur_iter, self.num_batches, global_step, time_elapsed))
logger.log_iter(self, cur_epoch, cur_iter, global_step, z, z_fixed)
cur_iter += 1
global_step += 1
cur_epoch += 1
cur_iter = 0