forked from qax-os/excelize
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcrypt.go
626 lines (585 loc) · 21.8 KB
/
crypt.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
// Copyright 2016 - 2020 The excelize Authors. All rights reserved. Use of
// this source code is governed by a BSD-style license that can be found in
// the LICENSE file.
//
// Package excelize providing a set of functions that allow you to write to
// and read from XLSX files. Support reads and writes XLSX file generated by
// Microsoft Excel™ 2007 and later. Support save file without losing original
// charts of XLSX. This library needs Go version 1.10 or later.
package excelize
import (
"bytes"
"crypto/aes"
"crypto/cipher"
"crypto/hmac"
"crypto/md5"
"crypto/sha1"
"crypto/sha256"
"crypto/sha512"
"encoding/base64"
"encoding/binary"
"encoding/xml"
"errors"
"hash"
"math/rand"
"reflect"
"strings"
"github.com/richardlehane/mscfb"
"golang.org/x/crypto/md4"
"golang.org/x/crypto/ripemd160"
"golang.org/x/text/encoding/unicode"
)
var (
blockKey = []byte{0x14, 0x6e, 0x0b, 0xe7, 0xab, 0xac, 0xd0, 0xd6} // Block keys used for encryption
blockKeyHmacKey = []byte{0x5f, 0xb2, 0xad, 0x01, 0x0c, 0xb9, 0xe1, 0xf6}
blockKeyHmacValue = []byte{0xa0, 0x67, 0x7f, 0x02, 0xb2, 0x2c, 0x84, 0x33}
blockKeyVerifierHashInput = []byte{0xfe, 0xa7, 0xd2, 0x76, 0x3b, 0x4b, 0x9e, 0x79}
blockKeyVerifierHashValue = []byte{0xd7, 0xaa, 0x0f, 0x6d, 0x30, 0x61, 0x34, 0x4e}
packageOffset = 8 // First 8 bytes are the size of the stream
packageEncryptionChunkSize = 4096
iterCount = 50000
cryptoIdentifier = []byte{ // checking protect workbook by [MS-OFFCRYPTO] - v20181211 3.1 FeatureIdentifier
0x3c, 0x00, 0x00, 0x00, 0x4d, 0x00, 0x69, 0x00, 0x63, 0x00, 0x72, 0x00, 0x6f, 0x00, 0x73, 0x00,
0x6f, 0x00, 0x66, 0x00, 0x74, 0x00, 0x2e, 0x00, 0x43, 0x00, 0x6f, 0x00, 0x6e, 0x00, 0x74, 0x00,
0x61, 0x00, 0x69, 0x00, 0x6e, 0x00, 0x65, 0x00, 0x72, 0x00, 0x2e, 0x00, 0x44, 0x00, 0x61, 0x00,
0x74, 0x00, 0x61, 0x00, 0x53, 0x00, 0x70, 0x00, 0x61, 0x00, 0x63, 0x00, 0x65, 0x00, 0x73, 0x00,
0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
}
oleIdentifier = []byte{
0xd0, 0xcf, 0x11, 0xe0, 0xa1, 0xb1, 0x1a, 0xe1,
}
)
// Encryption specifies the encryption structure, streams, and storages are
// required when encrypting ECMA-376 documents.
type Encryption struct {
XMLName xml.Name `xml:"encryption"`
KeyData KeyData `xml:"keyData"`
DataIntegrity DataIntegrity `xml:"dataIntegrity"`
KeyEncryptors KeyEncryptors `xml:"keyEncryptors"`
}
// KeyData specifies the cryptographic attributes used to encrypt the data.
type KeyData struct {
SaltSize int `xml:"saltSize,attr"`
BlockSize int `xml:"blockSize,attr"`
KeyBits int `xml:"keyBits,attr"`
HashSize int `xml:"hashSize,attr"`
CipherAlgorithm string `xml:"cipherAlgorithm,attr"`
CipherChaining string `xml:"cipherChaining,attr"`
HashAlgorithm string `xml:"hashAlgorithm,attr"`
SaltValue string `xml:"saltValue,attr"`
}
// DataIntegrity specifies the encrypted copies of the salt and hash values
// used to help ensure that the integrity of the encrypted data has not been
// compromised.
type DataIntegrity struct {
EncryptedHmacKey string `xml:"encryptedHmacKey,attr"`
EncryptedHmacValue string `xml:"encryptedHmacValue,attr"`
}
// KeyEncryptors specifies the key encryptors used to encrypt the data.
type KeyEncryptors struct {
KeyEncryptor []KeyEncryptor `xml:"keyEncryptor"`
}
// KeyEncryptor specifies that the schema used by this encryptor is the schema
// specified for password-based encryptors.
type KeyEncryptor struct {
XMLName xml.Name `xml:"keyEncryptor"`
URI string `xml:"uri,attr"`
EncryptedKey EncryptedKey `xml:"encryptedKey"`
}
// EncryptedKey used to generate the encrypting key.
type EncryptedKey struct {
XMLName xml.Name `xml:"http://schemas.microsoft.com/office/2006/keyEncryptor/password encryptedKey"`
SpinCount int `xml:"spinCount,attr"`
EncryptedVerifierHashInput string `xml:"encryptedVerifierHashInput,attr"`
EncryptedVerifierHashValue string `xml:"encryptedVerifierHashValue,attr"`
EncryptedKeyValue string `xml:"encryptedKeyValue,attr"`
KeyData
}
// StandardEncryptionHeader structure is used by ECMA-376 document encryption
// [ECMA-376] and Office binary document RC4 CryptoAPI encryption, to specify
// encryption properties for an encrypted stream.
type StandardEncryptionHeader struct {
Flags uint32
SizeExtra uint32
AlgID uint32
AlgIDHash uint32
KeySize uint32
ProviderType uint32
Reserved1 uint32
Reserved2 uint32
CspName string
}
// StandardEncryptionVerifier structure is used by Office Binary Document RC4
// CryptoAPI Encryption and ECMA-376 Document Encryption. Every usage of this
// structure MUST specify the hashing algorithm and encryption algorithm used
// in the EncryptionVerifier structure.
type StandardEncryptionVerifier struct {
SaltSize uint32
Salt []byte
EncryptedVerifier []byte
VerifierHashSize uint32
EncryptedVerifierHash []byte
}
// Decrypt API decrypt the CFB file format with ECMA-376 agile encryption and
// standard encryption. Support cryptographic algorithm: MD4, MD5, RIPEMD-160,
// SHA1, SHA256, SHA384 and SHA512 currently.
func Decrypt(raw []byte, opt *Options) (packageBuf []byte, err error) {
doc, err := mscfb.New(bytes.NewReader(raw))
if err != nil {
return
}
encryptionInfoBuf, encryptedPackageBuf := extractPart(doc)
mechanism, err := encryptionMechanism(encryptionInfoBuf)
if err != nil || mechanism == "extensible" {
return
}
switch mechanism {
case "agile":
return agileDecrypt(encryptionInfoBuf, encryptedPackageBuf, opt)
case "standard":
return standardDecrypt(encryptionInfoBuf, encryptedPackageBuf, opt)
default:
err = errors.New("unsupport encryption mechanism")
break
}
return
}
// Encrypt API encrypt data with the password.
func Encrypt(raw []byte, opt *Options) (packageBuf []byte, err error) {
// Generate a random key to use to encrypt the document. Excel uses 32 bytes. We'll use the password to encrypt this key.
packageKey, _ := randomBytes(32)
keyDataSaltValue, _ := randomBytes(16)
keyEncryptors, _ := randomBytes(16)
encryptionInfo := Encryption{
KeyData: KeyData{
BlockSize: 16,
KeyBits: len(packageKey) * 8,
HashSize: 64,
CipherAlgorithm: "AES",
CipherChaining: "ChainingModeCBC",
HashAlgorithm: "SHA512",
SaltValue: base64.StdEncoding.EncodeToString(keyDataSaltValue),
},
KeyEncryptors: KeyEncryptors{KeyEncryptor: []KeyEncryptor{{
EncryptedKey: EncryptedKey{SpinCount: 100000, KeyData: KeyData{
CipherAlgorithm: "AES",
CipherChaining: "ChainingModeCBC",
HashAlgorithm: "SHA512",
HashSize: 64,
BlockSize: 16,
KeyBits: 256,
SaltValue: base64.StdEncoding.EncodeToString(keyEncryptors)},
}}},
},
}
// Package Encryption
// Encrypt package using the package key.
encryptedPackage, err := cryptPackage(true, packageKey, raw, encryptionInfo)
if err != nil {
return
}
// Data Integrity
// Create the data integrity fields used by clients for integrity checks.
// Generate a random array of bytes to use in HMAC. The docs say to use the same length as the key salt, but Excel seems to use 64.
hmacKey, _ := randomBytes(64)
if err != nil {
return
}
// Create an initialization vector using the package encryption info and the appropriate block key.
hmacKeyIV, err := createIV(blockKeyHmacKey, encryptionInfo)
if err != nil {
return
}
// Use the package key and the IV to encrypt the HMAC key.
encryptedHmacKey, err := crypt(true, encryptionInfo.KeyData.CipherAlgorithm, encryptionInfo.KeyData.CipherChaining, packageKey, hmacKeyIV, hmacKey)
// Create the HMAC.
h := hmac.New(sha512.New, append(hmacKey, encryptedPackage...))
for _, buf := range [][]byte{hmacKey, encryptedPackage} {
h.Write(buf)
}
hmacValue := h.Sum(nil)
// Generate an initialization vector for encrypting the resulting HMAC value.
hmacValueIV, err := createIV(blockKeyHmacValue, encryptionInfo)
if err != nil {
return
}
// Encrypt the value.
encryptedHmacValue, err := crypt(true, encryptionInfo.KeyData.CipherAlgorithm, encryptionInfo.KeyData.CipherChaining, packageKey, hmacValueIV, hmacValue)
// Put the encrypted key and value on the encryption info.
encryptionInfo.DataIntegrity.EncryptedHmacKey = base64.StdEncoding.EncodeToString(encryptedHmacKey)
encryptionInfo.DataIntegrity.EncryptedHmacValue = base64.StdEncoding.EncodeToString(encryptedHmacValue)
// Key Encryption
// Convert the password to an encryption key.
key, err := convertPasswdToKey(opt.Password, blockKey, encryptionInfo)
if err != nil {
return
}
// Encrypt the package key with the encryption key.
encryptedKeyValue, err := crypt(true, encryptionInfo.KeyEncryptors.KeyEncryptor[0].EncryptedKey.CipherAlgorithm, encryptionInfo.KeyEncryptors.KeyEncryptor[0].EncryptedKey.CipherChaining, key, keyEncryptors, packageKey)
encryptionInfo.KeyEncryptors.KeyEncryptor[0].EncryptedKey.EncryptedKeyValue = base64.StdEncoding.EncodeToString(encryptedKeyValue)
// Verifier hash
// Create a random byte array for hashing.
verifierHashInput, _ := randomBytes(16)
// Create an encryption key from the password for the input.
verifierHashInputKey, err := convertPasswdToKey(opt.Password, blockKeyVerifierHashInput, encryptionInfo)
if err != nil {
return
}
// Use the key to encrypt the verifier input.
encryptedVerifierHashInput, err := crypt(true, encryptionInfo.KeyData.CipherAlgorithm, encryptionInfo.KeyData.CipherChaining, verifierHashInputKey, keyEncryptors, verifierHashInput)
if err != nil {
return
}
encryptionInfo.KeyEncryptors.KeyEncryptor[0].EncryptedKey.EncryptedVerifierHashInput = base64.StdEncoding.EncodeToString(encryptedVerifierHashInput)
// Create a hash of the input.
verifierHashValue := hashing(encryptionInfo.KeyData.HashAlgorithm, verifierHashInput)
// Create an encryption key from the password for the hash.
verifierHashValueKey, err := convertPasswdToKey(opt.Password, blockKeyVerifierHashValue, encryptionInfo)
if err != nil {
return
}
// Use the key to encrypt the hash value.
encryptedVerifierHashValue, err := crypt(true, encryptionInfo.KeyData.CipherAlgorithm, encryptionInfo.KeyData.CipherChaining, verifierHashValueKey, keyEncryptors, verifierHashValue)
if err != nil {
return
}
encryptionInfo.KeyEncryptors.KeyEncryptor[0].EncryptedKey.EncryptedVerifierHashValue = base64.StdEncoding.EncodeToString(encryptedVerifierHashValue)
// Marshal the encryption info buffer.
encryptionInfoBuffer, err := xml.Marshal(encryptionInfo)
if err != nil {
return
}
// TODO: Create a new CFB.
_, _ = encryptedPackage, encryptionInfoBuffer
err = errors.New("not support encryption currently")
return
}
// extractPart extract data from storage by specified part name.
func extractPart(doc *mscfb.Reader) (encryptionInfoBuf, encryptedPackageBuf []byte) {
for entry, err := doc.Next(); err == nil; entry, err = doc.Next() {
switch entry.Name {
case "EncryptionInfo":
buf := make([]byte, entry.Size)
i, _ := doc.Read(buf)
if i > 0 {
encryptionInfoBuf = buf
break
}
case "EncryptedPackage":
buf := make([]byte, entry.Size)
i, _ := doc.Read(buf)
if i > 0 {
encryptedPackageBuf = buf
break
}
}
}
return
}
// encryptionMechanism parse password-protected documents created mechanism.
func encryptionMechanism(buffer []byte) (mechanism string, err error) {
if len(buffer) < 4 {
err = errors.New("unknown encryption mechanism")
return
}
versionMajor, versionMinor := binary.LittleEndian.Uint16(buffer[0:2]), binary.LittleEndian.Uint16(buffer[2:4])
if versionMajor == 4 && versionMinor == 4 {
mechanism = "agile"
return
} else if (2 <= versionMajor && versionMajor <= 4) && versionMinor == 2 {
mechanism = "standard"
return
} else if (versionMajor == 3 || versionMajor == 4) && versionMinor == 3 {
mechanism = "extensible"
}
err = errors.New("unsupport encryption mechanism")
return
}
// ECMA-376 Standard Encryption
// standardDecrypt decrypt the CFB file format with ECMA-376 standard encryption.
func standardDecrypt(encryptionInfoBuf, encryptedPackageBuf []byte, opt *Options) ([]byte, error) {
encryptionHeaderSize := binary.LittleEndian.Uint32(encryptionInfoBuf[8:12])
block := encryptionInfoBuf[12 : 12+encryptionHeaderSize]
header := StandardEncryptionHeader{
Flags: binary.LittleEndian.Uint32(block[:4]),
SizeExtra: binary.LittleEndian.Uint32(block[4:8]),
AlgID: binary.LittleEndian.Uint32(block[8:12]),
AlgIDHash: binary.LittleEndian.Uint32(block[12:16]),
KeySize: binary.LittleEndian.Uint32(block[16:20]),
ProviderType: binary.LittleEndian.Uint32(block[20:24]),
Reserved1: binary.LittleEndian.Uint32(block[24:28]),
Reserved2: binary.LittleEndian.Uint32(block[28:32]),
CspName: string(block[32:]),
}
block = encryptionInfoBuf[12+encryptionHeaderSize:]
algIDMap := map[uint32]string{
0x0000660E: "AES-128",
0x0000660F: "AES-192",
0x00006610: "AES-256",
}
algorithm := "AES"
_, ok := algIDMap[header.AlgID]
if !ok {
algorithm = "RC4"
}
verifier := standardEncryptionVerifier(algorithm, block)
secretKey, err := standardConvertPasswdToKey(header, verifier, opt)
if err != nil {
return nil, err
}
// decrypted data
x := encryptedPackageBuf[8:]
blob, err := aes.NewCipher(secretKey)
if err != nil {
return nil, err
}
decrypted := make([]byte, len(x))
size := 16
for bs, be := 0, size; bs < len(x); bs, be = bs+size, be+size {
blob.Decrypt(decrypted[bs:be], x[bs:be])
}
return decrypted, err
}
// standardEncryptionVerifier extract ECMA-376 standard encryption verifier.
func standardEncryptionVerifier(algorithm string, blob []byte) StandardEncryptionVerifier {
verifier := StandardEncryptionVerifier{
SaltSize: binary.LittleEndian.Uint32(blob[:4]),
Salt: blob[4:20],
EncryptedVerifier: blob[20:36],
VerifierHashSize: binary.LittleEndian.Uint32(blob[36:40]),
}
if algorithm == "RC4" {
verifier.EncryptedVerifierHash = blob[40:60]
} else if algorithm == "AES" {
verifier.EncryptedVerifierHash = blob[40:72]
}
return verifier
}
// standardConvertPasswdToKey generate intermediate key from given password.
func standardConvertPasswdToKey(header StandardEncryptionHeader, verifier StandardEncryptionVerifier, opt *Options) ([]byte, error) {
encoder := unicode.UTF16(unicode.LittleEndian, unicode.IgnoreBOM).NewEncoder()
passwordBuffer, err := encoder.Bytes([]byte(opt.Password))
if err != nil {
return nil, err
}
key := hashing("sha1", verifier.Salt, passwordBuffer)
for i := 0; i < iterCount; i++ {
iterator := createUInt32LEBuffer(i, 4)
key = hashing("sha1", iterator, key)
}
var block int
hfinal := hashing("sha1", key, createUInt32LEBuffer(block, 4))
cbRequiredKeyLength := int(header.KeySize) / 8
cbHash := sha1.Size
buf1 := bytes.Repeat([]byte{0x36}, 64)
buf1 = append(standardXORBytes(hfinal, buf1[:cbHash]), buf1[cbHash:]...)
x1 := hashing("sha1", buf1)
buf2 := bytes.Repeat([]byte{0x5c}, 64)
buf2 = append(standardXORBytes(hfinal, buf2[:cbHash]), buf2[cbHash:]...)
x2 := hashing("sha1", buf2)
x3 := append(x1, x2...)
keyDerived := x3[:cbRequiredKeyLength]
return keyDerived, err
}
// standardXORBytes perform XOR operations for two bytes slice.
func standardXORBytes(a, b []byte) []byte {
r := make([][2]byte, len(a), len(a))
for i, e := range a {
r[i] = [2]byte{e, b[i]}
}
buf := make([]byte, len(a))
for p, q := range r {
buf[p] = q[0] ^ q[1]
}
return buf
}
// ECMA-376 Agile Encryption
// agileDecrypt decrypt the CFB file format with ECMA-376 agile encryption.
// Support cryptographic algorithm: MD4, MD5, RIPEMD-160, SHA1, SHA256, SHA384 and SHA512.
func agileDecrypt(encryptionInfoBuf, encryptedPackageBuf []byte, opt *Options) (packageBuf []byte, err error) {
var encryptionInfo Encryption
if encryptionInfo, err = parseEncryptionInfo(encryptionInfoBuf[8:]); err != nil {
return
}
// Convert the password into an encryption key.
key, err := convertPasswdToKey(opt.Password, blockKey, encryptionInfo)
if err != nil {
return
}
// Use the key to decrypt the package key.
encryptedKey := encryptionInfo.KeyEncryptors.KeyEncryptor[0].EncryptedKey
saltValue, err := base64.StdEncoding.DecodeString(encryptedKey.SaltValue)
if err != nil {
return
}
encryptedKeyValue, err := base64.StdEncoding.DecodeString(encryptedKey.EncryptedKeyValue)
if err != nil {
return
}
packageKey, err := crypt(false, encryptedKey.CipherAlgorithm, encryptedKey.CipherChaining, key, saltValue, encryptedKeyValue)
// Use the package key to decrypt the package.
return cryptPackage(false, packageKey, encryptedPackageBuf, encryptionInfo)
}
// convertPasswdToKey convert the password into an encryption key.
func convertPasswdToKey(passwd string, blockKey []byte, encryption Encryption) (key []byte, err error) {
var b bytes.Buffer
saltValue, err := base64.StdEncoding.DecodeString(encryption.KeyEncryptors.KeyEncryptor[0].EncryptedKey.SaltValue)
if err != nil {
return
}
b.Write(saltValue)
encoder := unicode.UTF16(unicode.LittleEndian, unicode.IgnoreBOM).NewEncoder()
passwordBuffer, err := encoder.Bytes([]byte(passwd))
if err != nil {
return
}
b.Write(passwordBuffer)
// Generate the initial hash.
key = hashing(encryption.KeyData.HashAlgorithm, b.Bytes())
// Now regenerate until spin count.
for i := 0; i < encryption.KeyEncryptors.KeyEncryptor[0].EncryptedKey.SpinCount; i++ {
iterator := createUInt32LEBuffer(i, 4)
key = hashing(encryption.KeyData.HashAlgorithm, iterator, key)
}
// Now generate the final hash.
key = hashing(encryption.KeyData.HashAlgorithm, key, blockKey)
// Truncate or pad as needed to get to length of keyBits.
keyBytes := encryption.KeyEncryptors.KeyEncryptor[0].EncryptedKey.KeyBits / 8
if len(key) < keyBytes {
tmp := make([]byte, 0x36)
key = append(key, tmp...)
key = tmp
} else if len(key) > keyBytes {
key = key[:keyBytes]
}
return
}
// hashing data by specified hash algorithm.
func hashing(hashAlgorithm string, buffer ...[]byte) (key []byte) {
var hashMap = map[string]hash.Hash{
"md4": md4.New(),
"md5": md5.New(),
"ripemd-160": ripemd160.New(),
"sha1": sha1.New(),
"sha256": sha256.New(),
"sha384": sha512.New384(),
"sha512": sha512.New(),
}
handler, ok := hashMap[strings.ToLower(hashAlgorithm)]
if !ok {
return key
}
for _, buf := range buffer {
handler.Write(buf)
}
key = handler.Sum(nil)
return key
}
// createUInt32LEBuffer create buffer with little endian 32-bit unsigned
// integer.
func createUInt32LEBuffer(value int, bufferSize int) []byte {
buf := make([]byte, bufferSize)
binary.LittleEndian.PutUint32(buf, uint32(value))
return buf
}
// parseEncryptionInfo parse the encryption info XML into an object.
func parseEncryptionInfo(encryptionInfo []byte) (encryption Encryption, err error) {
err = xml.Unmarshal(encryptionInfo, &encryption)
return
}
// crypt encrypt / decrypt input by given cipher algorithm, cipher chaining,
// key and initialization vector.
func crypt(encrypt bool, cipherAlgorithm, cipherChaining string, key, iv, input []byte) (packageKey []byte, err error) {
block, err := aes.NewCipher(key)
if err != nil {
return input, err
}
var stream cipher.BlockMode
if encrypt {
stream = cipher.NewCBCEncrypter(block, iv)
} else {
stream = cipher.NewCBCDecrypter(block, iv)
}
stream.CryptBlocks(input, input)
return input, nil
}
// cryptPackage encrypt / decrypt package by given packageKey and encryption
// info.
func cryptPackage(encrypt bool, packageKey, input []byte, encryption Encryption) (outputChunks []byte, err error) {
encryptedKey := encryption.KeyData
var offset = packageOffset
if encrypt {
offset = 0
}
var i, start, end int
var iv, outputChunk []byte
for end < len(input) {
start = end
end = start + packageEncryptionChunkSize
if end > len(input) {
end = len(input)
}
// Grab the next chunk
var inputChunk []byte
if (end + offset) < len(input) {
inputChunk = input[start+offset : end+offset]
} else {
inputChunk = input[start+offset : end]
}
// Pad the chunk if it is not an integer multiple of the block size
remainder := len(inputChunk) % encryptedKey.BlockSize
if remainder != 0 {
inputChunk = append(inputChunk, make([]byte, encryptedKey.BlockSize-remainder)...)
}
// Create the initialization vector
iv, err = createIV(i, encryption)
if err != nil {
return
}
// Encrypt/decrypt the chunk and add it to the array
outputChunk, err = crypt(encrypt, encryptedKey.CipherAlgorithm, encryptedKey.CipherChaining, packageKey, iv, inputChunk)
if err != nil {
return
}
outputChunks = append(outputChunks, outputChunk...)
i++
}
if encrypt {
outputChunks = append(createUInt32LEBuffer(len(input), 8), outputChunks...)
}
return
}
// createIV create an initialization vector (IV).
func createIV(blockKey interface{}, encryption Encryption) ([]byte, error) {
encryptedKey := encryption.KeyData
// Create the block key from the current index
var blockKeyBuf []byte
if reflect.TypeOf(blockKey).Kind() == reflect.Int {
blockKeyBuf = createUInt32LEBuffer(blockKey.(int), 4)
} else {
blockKeyBuf = blockKey.([]byte)
}
saltValue, err := base64.StdEncoding.DecodeString(encryptedKey.SaltValue)
if err != nil {
return nil, err
}
// Create the initialization vector by hashing the salt with the block key.
// Truncate or pad as needed to meet the block size.
iv := hashing(encryptedKey.HashAlgorithm, append(saltValue, blockKeyBuf...))
if len(iv) < encryptedKey.BlockSize {
tmp := make([]byte, 0x36)
iv = append(iv, tmp...)
iv = tmp
} else if len(iv) > encryptedKey.BlockSize {
iv = iv[0:encryptedKey.BlockSize]
}
return iv, nil
}
// randomBytes returns securely generated random bytes. It will return an error if the system's
// secure random number generator fails to function correctly, in which case the caller should not
// continue.
func randomBytes(n int) ([]byte, error) {
b := make([]byte, n)
_, err := rand.Read(b)
return b, err
}