-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathModel.py
39 lines (30 loc) · 1.16 KB
/
Model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import torch
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import torch.nn as nn
from torch import tensor
class NeRfModel(nn.Module):
def __init__(self, num_fourier_features, layer_size, number_of_layers):
super().__init__()
self.layer1 = nn.Linear(3 + 6*num_fourier_features, layer_size)
nn.init.xavier_uniform_(self.layer1.weight)
nn.init.zeros_(self.layer1.bias)
self.layers = nn.ModuleList([nn.Linear(layer_size, layer_size) for _ in range(number_of_layers)])
for layer in self.layers:
nn.init.xavier_uniform_(layer.weight)
nn.init.zeros_(layer.bias)
self.rgb_layer = nn.Linear(layer_size, 3)
nn.init.xavier_uniform_(self.rgb_layer.weight)
nn.init.zeros_(self.rgb_layer.bias)
self.radiance_layer = nn.Linear(layer_size, 1)
nn.init.xavier_uniform_(self.radiance_layer.weight)
nn.init.zeros_(self.radiance_layer.bias)
def forward(self, x):
x = nn.functional.relu(self.layer1(x))
for layer in self.layers:
x = nn.functional.relu(layer(x))
rgb = torch.sigmoid(self.rgb_layer(x))
radiance = torch.relu(self.radiance_layer(x))
return torch.cat([rgb, radiance], dim=-1)