Optimization for Machine Learning CS-439

Lecture 6: SGD, Non-convex optimization

Martin Jaggi

EPFL - github.com/epfml/OptML_course

March 29, 2019

Tame strong convexity: $\mathcal{O}(1/\varepsilon)$ steps

Theorem

Let $f : \mathbb{R}^d \to \mathbb{R}$ be differentiable and strongly convex with parameter $\mu > 0$; let \mathbf{x}^* be the unique global minimum of f. With decreasing step size

$$\gamma_t := \frac{2}{\mu(t+1)}$$

stochastic gradient descent yields

$$\mathbb{E}\left[f\left(\frac{2}{T(T+1)}\sum_{t=1}^{T}t\cdot\mathbf{x}_{t}\right)-f(\mathbf{x}^{\star})\right]\leq\frac{2B^{2}}{\mu(T+1)},$$

where $B^2 := \max_{t=1}^T \mathbb{E} [\| \mathbf{g}_t \|^2].$

Almost same result as for subgradient descent, but in expectation.

Tame strong convexity: $\mathcal{O}(1/\varepsilon)$ steps II Proof.

Take expectations over vanilla analysis, before summing up (with varying stepsize γ_t):

$$\mathbb{E}\big[\mathbf{g}_t^{\top}(\mathbf{x}_t - \mathbf{x}^{\star})\big] = \frac{\gamma_t}{2}\mathbb{E}\big[\|\mathbf{g}_t\|^2\big] + \frac{1}{2\gamma_t}\left(\mathbb{E}\big[\|\mathbf{x}_t - \mathbf{x}^{\star}\|^2\big] - \mathbb{E}\big[\|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^2\big]\right).$$

"Strong convexity in expectation":

$$\mathbb{E}\left[\mathbf{g}_{t}^{\top}(\mathbf{x}_{t} - \mathbf{x}^{\star})\right] = \mathbb{E}\left[\nabla f(\mathbf{x}_{t})^{\top}(\mathbf{x}_{t} - \mathbf{x}^{\star})\right] \ge \mathbb{E}\left[f(\mathbf{x}_{t}) - f(\mathbf{x}^{\star})\right] + \frac{\mu}{2}\mathbb{E}\left[\|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2}\right]$$

Putting it together (with $\mathbb{E}[||\mathbf{g}_t||^2] \leq B^2$):

$$\mathbb{E}[f(\mathbf{x}_t) - f(\mathbf{x}^{\star})] \le \frac{B^2 \gamma_t}{2} + \frac{(\gamma_t^{-1} - \mu)}{2} \mathbb{E}\left[\|\mathbf{x}_t - \mathbf{x}^{\star}\|^2\right] - \frac{\gamma_t^{-1}}{2} \mathbb{E}\left[\|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^2\right].$$

Proof continues as for subgradient descent, this time with expectations.

Mini-batch SGD

Instead of using a single element f_i , use an average of several of them:

$$\tilde{\mathbf{g}}_t := \frac{1}{m} \sum_{j=1}^m \mathbf{g}_t^j.$$

Extreme cases:

 $m = 1 \Leftrightarrow \mathsf{SGD}$ as originally defined $m = n \Leftrightarrow \mathsf{full}$ gradient descent

Benefit: Gradient computation can be naively parallelized

Mini-batch SGD

Variance Intuition: Taking an average of many independent random variables reduces the variance. So for larger size of the mini-batch m, $\tilde{\mathbf{g}}_t$ will be closer to the true gradient, in expectation:

$$\mathbb{E}\left[\left\|\tilde{\mathbf{g}}_{t}-\nabla f(\mathbf{x}_{t})\right\|^{2}\right] = \mathbb{E}\left[\left\|\frac{1}{m}\sum_{j=1}^{m}\mathbf{g}_{t}^{j}-\nabla f(\mathbf{x}_{t})\right\|^{2}\right]$$
$$= \frac{1}{m}\mathbb{E}\left[\left\|\mathbf{g}_{t}^{1}-\nabla f(\mathbf{x}_{t})\right\|^{2}\right]$$
$$= \frac{1}{m}\mathbb{E}\left[\left\|\mathbf{g}_{t}^{1}\right\|^{2}\right] - \frac{1}{m}\|\nabla f(\mathbf{x}_{t})\|^{2} \le \frac{B^{2}}{m}.$$

Using a modification of the SGD analysis, can use this quantity to relate convergence rate to the rate of full gradient descent.

Stochastic Subgradient Descent

For problems which are not necessarily differentiable, we modify SGD to use a subgradient of f_i in each iteration. The update of **stochastic subgradient descent** is given by

```
sample i \in [n] uniformly at random
let \mathbf{g}_t \in \partial f_i(\mathbf{x}_t)
\mathbf{x}_{t+1} := \mathbf{x}_t - \gamma_t \mathbf{g}_t.
```

In other words, we are using an unbiased estimate of a subgradient at each step, $\mathbb{E}[\mathbf{g}_t | \mathbf{x}_t] \in \partial f(\mathbf{x}_t).$

Convergence in $\mathcal{O}(1/\varepsilon^2)$, by using the subgradient property at the beginning of the proof, where convexity was applied.

Constrained optimization

For constrained optimization, our theorem for the SGD convergence in $O(1/\varepsilon^2)$ steps directly extends to constrained problems as well.

After every step of SGD, projection back to X is applied as usual. The resulting algorithm is called projected SGD.

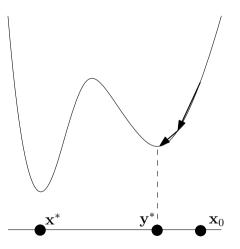
Chapter 6

Non-convex Optimization

EPFL Machine Learning and Optimization Laboratory

Gradient Descent in the nonconvex world

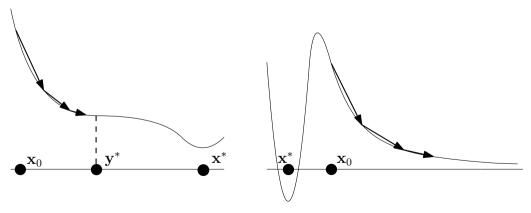
may get stuck in a local minimum and miss the global minimum;



Gradient Descent in the nonconvex world II

Even if there is a unique local minimum (equal to the global minimum), we

- may get stuck in a saddle point;
- run off to infinity;
- possibly encounter other bad behaviors.



Gradient Descent in the nonconvex world III

Often, we observe good behavior in practice.

Theoretical explanations mostly missing.

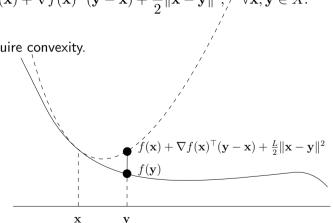
This lecture: under favorable conditions, we sometimes can say something useful about the behavior of gradient descent, even on nonconvex functions.

Smooth (but not necessarily convex) functions

Recall: A differentiable $f : \mathbf{dom}(f) \to \mathbb{R}$ is smooth with parameter $L \in \mathbb{R}_+$ over a convex set $X \subseteq \mathbf{dom}(f)$ if

$$f(\mathbf{y}) \le f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + \frac{L}{2} \|\mathbf{x} - \mathbf{y}\|^2, \mathbf{y}^{\prime} \quad \forall \mathbf{x}, \mathbf{y} \in X.$$
(1)

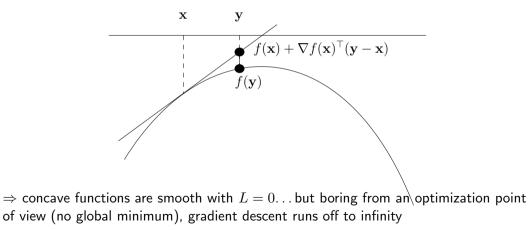
Definition does not require convexity.



Concave functions

f is called **concave** if -f is convex.

For all \mathbf{x} , the graph of a differentiable concave function is below the tangent hyperplane at \mathbf{x} .



Bounded Hessians \Rightarrow smooth

Lemma

Let $f : \operatorname{dom}(f) \to \mathbb{R}$ be twice differentiable, with $X \subseteq \operatorname{dom}(f)$ a convex set, and $\|\nabla^2 f(\mathbf{x})\| \le L$ for all $\mathbf{x} \in X$, where $\|\cdot\|$ is spectral norm. Then f is smooth with parameter L over X.

Examples:

- all quadratic functions $f(\mathbf{x}) = \mathbf{x}^{\top} A \mathbf{x} + \mathbf{b}^{\top} \mathbf{x} + c$
- $f(x) = \sin(x)$ (many global minima)

Bounded Hessians \Rightarrow smooth II

Proof.

By Theorem 1.10 (applied to the gradient function ∇f), bounded Hessians imply Lipschitz continuity of the gradient,

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\| \le L \|\mathbf{x} - \mathbf{y}\|, \quad \mathbf{x}, \mathbf{y} \in X.$$

To show that this implies smoothness, we use $h(1) - h(0) = \int_0^1 h'(t) dt$ with

$$h(t) := f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})), \quad t \in [0, 1],$$

Chain rule:

$$h'(t) = \nabla f(\mathbf{x} + t(\mathbf{y} - \mathbf{x}))^{\top}(\mathbf{y} - \mathbf{x}).$$

Bounded Hessians \Rightarrow smooth III

Proof.

For $\mathbf{x}, \mathbf{y} \in X$:

$$f(\mathbf{y}) - f(\mathbf{x}) - \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x})$$

$$= h(1) - h(0) - \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) \quad \text{(definition of } h\text{)}$$

$$= \int_{0}^{1} h'(t) dt - \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x})$$

$$= \int_{0}^{1} \nabla f(\mathbf{x} + t(\mathbf{y} - \mathbf{x}))^{\top} (\mathbf{y} - \mathbf{x}) dt - \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x})$$

$$= \int_{0}^{1} \left(\nabla f(\mathbf{x} + t(\mathbf{y} - \mathbf{x}))^{\top} (\mathbf{y} - \mathbf{x}) - \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) \right) dt$$

$$= \int_{0}^{1} \left(\nabla f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) - \nabla f(\mathbf{x}) \right)^{\top} (\mathbf{y} - \mathbf{x}) dt$$

Bounded Hessians \Rightarrow smooth IV Proof.

For $\mathbf{x}, \mathbf{y} \in X$:

$$\begin{aligned} f(\mathbf{y}) &- f(\mathbf{x}) - \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) \\ &= \int_{0}^{1} \left(\nabla f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) - \nabla f(\mathbf{x}) \right)^{\top} (\mathbf{y} - \mathbf{x}) dt \\ &\leq \int_{0}^{1} \left| \left(\nabla f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) - \nabla f(\mathbf{x}) \right)^{\top} (\mathbf{y} - \mathbf{x}) \right| dt \\ &\leq \int_{0}^{1} \left\| \left(\nabla f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) - \nabla f(\mathbf{x}) \right) \right\| \| (\mathbf{y} - \mathbf{x}) \| dt \quad \text{(Cauchy-Schwarz)} \\ &\leq \int_{0}^{1} L \| t(\mathbf{y} - \mathbf{x}) \| \| (\mathbf{y} - \mathbf{x}) \| dt \quad \text{(Lipschitz continuous gradients (6.1))} \\ &= \int_{0}^{1} L t \| \mathbf{x} - \mathbf{y} \|^{2} = \frac{L}{2} \| \mathbf{x} - \mathbf{y} \|^{2}. \end{aligned}$$

EPFL Machine Learning and Optimization Laboratory

Smooth \Rightarrow **bounded Hessians**?

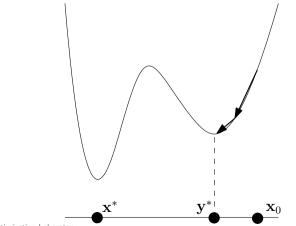
Yes, over any open convex set X (Exercise 33).

Gradient descent on smooth functions

Will prove: $\|\nabla f(\mathbf{x}_t)\|^2 \to 0$ for $t \to \infty...$

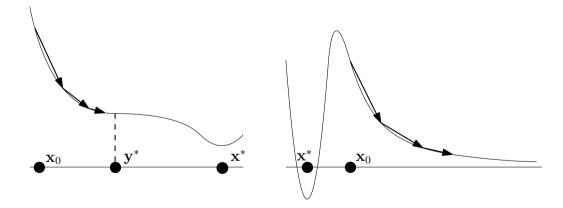
... at the same rate as $f(\mathbf{x}_t) - f(\mathbf{x}^{\star}) \to 0$ in the convex case.

 $f(\mathbf{x}_t) - f(\mathbf{x}^*)$ itself may not converge to 0 in the nonconvex case:



What does $\|\nabla f(\mathbf{x}_t)\|^2 \to 0$ mean?

It may or may not mean that we converge to a critical point $(\nabla f(\mathbf{y}^{\star}) = \mathbf{0})$



Gradient descent on smooth (not necessarily convex) functions

Theorem

Let $f : \mathbb{R}^d \to \mathbb{R}$ be differentiable with a global minimum \mathbf{x}^* ; furthermore, suppose that f is smooth with parameter L according to Definition 2.2. Choosing stepsize

$$\gamma := \frac{1}{L},$$

gradient descent yields

$$\frac{1}{T}\sum_{t=0}^{T-1} \|\nabla f(\mathbf{x}_t)\|^2 \le \frac{2L}{T} (f(\mathbf{x}_0) - f(\mathbf{x}^*)), \quad T > 0.$$

In particular, $\|\nabla f(\mathbf{x}_t)\|^2 \leq \frac{2L}{T} (f(\mathbf{x}_0) - f(\mathbf{x}^*))$ for some $t \in \{0, \dots, T-1\}$. And also, $\lim_{t\to\infty} \|\nabla f(\mathbf{x}_t)\|^2 = 0$ (Exercise 34).

Gradient descent on smooth (not necessarily convex) functions II

Proof.

Sufficient decrease (Lemma 2.6), does not require convexity:

$$f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_t) - \frac{1}{2L} \|\nabla f(\mathbf{x}_t)\|^2, \quad t \ge 0.$$

Rewriting:

$$\|\nabla f(\mathbf{x}_t)\|^2 \le 2L \big(f(\mathbf{x}_t) - f(\mathbf{x}_{t+1}) \big).$$

Telescoping sum:

$$\sum_{t=0}^{T-1} \|\nabla f(\mathbf{x}_t)\|^2 \le 2L \big(f(\mathbf{x}_0) - f(\mathbf{x}_T) \big) \le 2L \big(f(\mathbf{x}_0) - f(\mathbf{x}^\star) \big).$$

The statement follows (divide by T).

No overshooting

In the smooth setting, and with stepsize 1/L, gradient descent cannot overshoot, i.e. pass a critical point (Exercise 35).

