
Optimization for Machine Learning
CS-439

Lecture 7: Non-convex opt., Newton’s Method

Martin Jaggi

EPFL – github.com/epfml/OptML_course

April 5, 2019

github.com/epfml/OptML_course

Trajectory Analysis

Even if the “landscape” (graph) of a nonconvex function has local minima, saddle
points, and flat parts, gradient descent may avoid them and still converge to a global
minimum.

For this, one needs a good starting point and some theoretical understanding of what
happens when we start there—this is trajectory analysis.

2018: trajectory analysis for training deep linear linear neural networks, under suitable
conditions [ACGH18].

Here: vastly simplified setting that allows us to show the main ideas (and limitations).

EPFL Machine Learning and Optimization Laboratory 2/29

Linear models with several outputs

Recall: Learning linear models

I n inputs x1, . . . ,xn, where each input xi ∈ Rd

I n outputs y1, . . . , yn ∈ R
I Hypothesis (after centering):

yi ≈ w>xi,

for a weight vector w = (w1, . . . , wd) ∈ Rd to be learned.

Now more than one output value:

I n outputs y1, . . . ,yn, where each output yi ∈ Rm

I Hypothesis:
yi ≈Wxi,

for a weight matrix W ∈ Rm×d to be learned.

EPFL Machine Learning and Optimization Laboratory 3/29

Minimizing the least squares error

Compute

W ? = argmin
W∈Rm×d

n∑
i=1

‖Wxi − yi‖2 .

I X ∈ Rd×n: matrix whose columns are the xi

I Y ∈ Rm×n: matrix whose columns are the yi

Then
W ? = argmin

W∈Rm×d

‖WX − Y ‖2F ,

where ‖A‖F =
√∑

i,j a
2
ij is the Frobenius norm of a matrix A.

Frobenius norm of A = Euclidean norm of vec(A) (“flattening” of A)

EPFL Machine Learning and Optimization Laboratory 4/29

Minimizing the least squares error II

W ? = argmin
W∈Rm×d

‖WX − Y ‖2F

is the global minimum of a convex quadratic function f(W).

To find W ?, solve ∇f(W) = 0 (system of linear equations).

⇔ training a linear neural network with one layer under least squares error.
x1

x2

x3

x4

x5

y1

y2

W

x 7→ y = Wx

EPFL Machine Learning and Optimization Laboratory 5/29

Deep linear neural networks

x1

x2

x3

x4

x5

y1

y2

h11

h12

h13

h14

h21

h22

h23

h24

h25

h26

W1 W2 W3

x 7→ y = W3W2W1x

Not more expressive:

x 7→ y = W3W2W1x ⇔ x 7→ y = Wx, W := W3W2W1.

EPFL Machine Learning and Optimization Laboratory 6/29

Training deep linear neural networks
With ` layers:

W ? = argmin
W1,W2,...,W`

‖W`W`−1 · · ·W1X − Y ‖2F ,

Nonconvex function for ` > 1.

Simple playground in which we can try to understand why training deep neural
networks with gradient descent works.

Here: all matrices are 1× 1, Wi = xi, X = 1, Y = 1, ` = d ⇒ f : Rd → R,

f(x) :=
1

2

(
d∏

k=1

xk − 1

)2

.

Toy example in our simple playground.

But analysis of gradient descent on f has similar ingredients as the one on general
deep linear neural networks [ACGH18].

EPFL Machine Learning and Optimization Laboratory 7/29

A simple nonconvex function

As d is fixed, abbreviate
∏d

k=1 xk by
∏

k xk: f(x) =
1

2

(∏
k

xk − 1

)2

Level set plotEPFL Machine Learning and Optimization Laboratory 8/29

The gradient

∇f(x) =

(∏
k

xk − 1

)∏
k 6=1

xk, . . . ,
∏
k 6=d

xk

 .

Critical points (∇f(x) = 0):
I
∏

k xk = 1 (global
minima)

I d = 2: the hyperbola
{(x1, x2) : x1x2 = 1}

I at least two of the xk are
zero (saddle points)

I d = 2: the origin
(x1, x2) = (0, 0)

EPFL Machine Learning and Optimization Laboratory 9/29

Negative gradient directions (followed by gradient descent)

Difficult to avoid convergence to a global minimum, but it is possible (Exercise 37).
EPFL Machine Learning and Optimization Laboratory 10/29

Convergence analysis: Overview
Want to show that for any d > 1, and from anywhere in X = {x : x > 0,

∏
k xk ≤ 1},

gradient descent will converge to a global minimum.

f is not smooth over X. We show that f is smooth along the trajectory of gradient
descent for suitable L, so that we get sufficient decrease

f(xt+1) ≤ f(xt)−
1

2L
‖∇f(xt)‖2, t ≥ 0.

Then, we cannot converge to a saddle point: all these have (at least two) zero entries
and therefore function value 1/2. But for starting point x0 ∈ X, we have f(x0) < 1/2,
so we can never reach a saddle while decreasing f .

Doesn’t this imply converge to a global mimimum? No!

I Sublevel sets are unbounded, so we could in principle run off to infinity.

I Other bad things might happen (we haven’t characterized what can go wrong).

EPFL Machine Learning and Optimization Laboratory 11/29

Convergence analysis: Overview II

For x > 0,
∏

k xk ≥ 1, we also get convergence (Exercise 36).

⇒ convergence from anywhere in the interior of the positive orthant {x : x > 0}.

But there are also starting points from which gradient descent will not converge to a
global minimum (Exercise 37).

EPFL Machine Learning and Optimization Laboratory 12/29

Main tool: Balanced iterates
Definition

Let x > 0 (componentwise), and let c ≥ 1 be a real number. x is called c-balanced if
xi ≤ cxj for all 1 ≤ i, j ≤ d.

Any initial iterate x0 > 0 is c-balanced for some (possibly large) c.

Lemma

Let x > 0 be c-balanced with
∏

k xk ≤ 1. Then for any stepsize γ > 0,
x′ := x− γ∇f(x) satisfies x′ ≥ x (componentwise) and is also c-balanced.

Proof.

∆ := −γ(
∏

k xk − 1)(
∏

k xk) ≥ 0. ∇f(x) = (
∏

k xk − 1)
(∏

k 6=1 xk, . . . ,
∏

k 6=d xk

)
.

Gradient descent step:

x′k = xk +
∆

xk
≥ xk, k = 1, . . . , d.

For i, j, we have xi ≤ cxj and xj ≤ cxi
(⇔ 1/xi ≤ c/xj). We therefore get

x′i = xi +
∆

xi
≤ cxj +

∆c

xj
= cx′j .

EPFL Machine Learning and Optimization Laboratory 13/29

Bounded Hessians along the trajectory
Compute ∇2f(x):

∇2f(x)ij is the j-th partial derivative of the i-th entry of ∇f(x).

(∇f)i =

(∏
k

xk − 1

)∏
k 6=i

xk

∇2f(x)ij =

∏
k 6=i

xk

2

, j = i

2
∏
k 6=i

xk
∏
k 6=j

xk −
∏
k 6=i,j

xk, j 6= i

Need to bound
∏

k 6=i xk,
∏

k 6=j xk,
∏

k 6=i,j xk!

EPFL Machine Learning and Optimization Laboratory 14/29

Bounded Hessians along the trajectory II
Lemma

Suppose that x > 0 is c-balanced. Then for any I ⊆ {1, . . . , d}, we have

(
1

c

)|I|(∏
k

xk

)1−|I|/d

≤
∏
k/∈I

xk ≤ c|I|

(∏
k

xk

)1−|I|/d

.

Proof.

For any i, we have xdi ≥ (1/c)d
∏

k xk by balancedness, hence xi ≥ (1/c)(
∏

k xk)1/d.It
follows that

∏
k/∈I

xk =

∏
k xk∏
i∈I xi

≤
∏

k xk

(1/c)|I|(
∏

k xk)|I|/d
= c|I|

(∏
k

xk

)1−|I|/d

.

The lower bound follows in the same way from xdi ≤ cd
∏

k xk.
EPFL Machine Learning and Optimization Laboratory 15/29

Bounded Hessians along the trajectory III

Lemma

Let x > 0 be c-balanced with
∏

k xk ≤ 1. Then∥∥∇2f(x)
∥∥ ≤ ∥∥∇2f(x)

∥∥
F
≤ 3dc2.

where ‖A‖F is the Frobenius norm and ‖A‖ the spectral norm.

Proof.

‖A‖ ≤ ‖A‖F : Exercise 38. Now use previous lemma and
∏

k xk ≤ 1:∣∣∇2f(x)ii
∣∣ = |(

∏
k 6=i

xk)2| ≤ c2

∣∣∇2f(x)ij
∣∣ ≤ |2∏

k 6=i

xk
∏
k 6=j

xk|+ |
∏
k 6=i,j

xk| ≤ 3c2.

Hence,
∥∥∇2f(x)

∥∥2
F
≤ 9d2c4. Taking square roots, the statement follows.

EPFL Machine Learning and Optimization Laboratory 16/29

Smoothness along the trajectory
Lemma

Let x > 0 be c-balanced with
∏

k xk < 1, L = 3dc2. Let γ := 1/L. Then for all
0 ≤ ν ≤ γ,

x′ := x− ν∇f(x) ≥ x

is c-balanced with
∏

k x
′
k ≤ 1, and f is smooth with parameter L over the line

segment connecting x and x− γ∇f(x).

Proof.
I x′ ≥ x > 0 is c-balanced by Lemma 6.5.

I ∇f(x) 6= 0 (due to x′ > 0,
∏

k xk < 1, we can’t be at a critical point).

I No overshooting: we can’t reach
∏

k x
′
k = 1 (global minimum) for ν < γ, as f is

smooth with parameter L between x and x′ (using previous bound on Hessians in
Lemma 6.1).

I By continutity,
∏

k x
′
k ≤ 1 for all ν ≤ γ.

I f is smooth with parameter L between x and x′ for ν = γ.
EPFL Machine Learning and Optimization Laboratory 17/29

Convergence

Theorem

Let c ≥ 1 and δ > 0 such that x0 > 0 is c-balanced with δ ≤
∏

k(x0)k < 1. Choosing
stepsize

γ =
1

3dc2
,

gradient descent satisfies

f(xT) ≤
(

1− δ2

3c4

)T

f(x0), T ≥ 0.

I Error converges to 0 exponentially fast.

I Exercise 39: iterates themselves converge (to an optimal solution).

EPFL Machine Learning and Optimization Laboratory 18/29

Convergence: Proof
Proof.

I For t ≥ 0, f is smooth between xt and xt+1 with parameter L = 3dc2.

I Sufficient decrease:

f(xt+1) ≤ f(xt)−
1

6dc2
‖∇f(xt)‖2 .

For every c-balanced x with δ ≤
∏

k xk ≤ 1, ‖∇f(x)‖2 equals

2f(x)

d∑
i=1

∏
k 6=i

xk

2

≥ 2f(x)
d

c2

(∏
k

xk

)2−2/d

≥ 2f(x)
d

c2

(∏
k

xk

)2

≥ 2f(x)
d

c2
δ2.

I Hence, f(xt+1) ≤ f(xt)−
1

6dc2
2f(xt)

d

c2
δ2 = f(xt)

(
1− δ2

3c4

)
.

EPFL Machine Learning and Optimization Laboratory 19/29

Discussion

Fast convergence as for strongly convex functions!

But there is a catch. . .

Consider starting solution x0 = (1/2, . . . , 1/2).

δ ≤
∏

k(x0)k = 2−d.

Decrease in function value by a factor of(
1− 1

3 · 4d

)
,

per step.

Need T ≈ 4d to reduce the initial error by a constant factor not depending on d.

Problem: gradients are exponentially small in the beginning, extremely slow progress.

For polynomial runtime, must start at distance O(1/
√
d) from optimality.

EPFL Machine Learning and Optimization Laboratory 20/29

Chapter 7

Newton’s Method

EPFL Machine Learning and Optimization Laboratory 21/29

1-dimensional case: Newton-Raphson method

Goal: find a zero of differentiable
f : R→ R.

Method:

xt+1 := xt −
f(xt)

f ′(xt)
, t ≥ 0.

xt+1 solves

f(xt) + f ′(xt)(x− xt) = 0, xt xt+1

f(x)

f(xt) + f ′(xt)(x− xt)

EPFL Machine Learning and Optimization Laboratory 22/29

The Babylonian method

Computing square roots: find a zero of f(x) = x2 −R,R ∈ R+.

Newton-Raphson step:

xt+1 = xt −
f(xt)

f ′(xt)
= xt −

x2t −R
2xt

=
1

2

(
xt +

R

xt

)
.

Starting from x0 > 0, we have

xt+1 =
1

2

(
xt +

R

xt

)
≥ xt

2
.

Starting from x0 = R ≥ 1, it takes O(logR) steps to get xt−
√
R < 1/2 (Exercise 40).

EPFL Machine Learning and Optimization Laboratory 23/29

The Babylonian method - Takeoff

Suppose x0 −
√
R < 1/2 (achievable after O(logR) steps).

xt+1 −
√
R =

1

2

(
xt +

R

xt

)
−
√
R =

xt
2

+
R

2xt
−
√
R =

1

2xt

(
xt −

√
R
)2
.

Assume R ≥ 1/4.Then all iterates have value at least
√
R ≥ 1/2. Hence we get

xt+1 −
√
R ≤

(
xt −

√
R
)2
.

xT −
√
R ≤

(
x0 −

√
R
)2T

<

(
1

2

)2T

, T ≥ 0.

To get xT −
√
R < ε, we only need T = log log(1ε) steps!

EPFL Machine Learning and Optimization Laboratory 24/29

The Babylonian method - Example

R = 1000, IEEE 754 double arithmetic

I 7 steps to get x7 −
√

1000 < 1/2

I 3 more steps to get x10 equal to
√

1000 up to machine precision (53 binary digits).

I First phase: ≈ one more correct digit per iteration

I Last phase, ≈ double the number of correct digits in each iteration!

Once you’re close, you’re there. . .

EPFL Machine Learning and Optimization Laboratory 25/29

Newton’s method for optimization

1-dimensional case: Find a global minimum x? of a differentiable convex function
f : R→ R.

Can equivalently search for a zero of the derivative f ′: Apply the Newton-Raphson
method to f ′.

Update step:

xt+1 := xt −
f ′(xt)

f ′′(xt)
= xt − f ′′(xt)−1f ′(xt)

(needs f twice differentiable).

d-dimensional case: Newton’s method for minimizing a convex function f : Rd → R:

xt+1 := xt −∇2f(xt)
−1∇f(xt)

EPFL Machine Learning and Optimization Laboratory 26/29

Newton’s method = adaptive gradient descent

General update scheme:
xt+1 = xt −H(xt)∇f(xt),

where H(x) ∈ Rd×d is some matrix.

Newton’s method: H = ∇2f(xt)
−1.

Gradient descent: H = γI.

Newton’s method: “adaptive gradient descent”, adaptation is w.r.t. the local geometry
of the function at xt.

EPFL Machine Learning and Optimization Laboratory 27/29

Convergence in one step on quadratic functions
A nondegenerate quadratic function is a function of the form

f(x) =
1

2
x>Mx− q>x + c,

where M ∈ Rd×d is an invertible symmetric matrix, q ∈ Rd, c ∈ R. Let x? = M−1q
be the unique solution of ∇f(x) = 0.

I x? is the unique global minimum if f is convex.

Lemma

On nondegenerate quadratic functions, with any starting point x0 ∈ Rd, Newton’s
method yields x1 = x?.

Proof.

We have ∇f(x) = Mx− q (this implies x? = M−1q) and ∇2f(x) = M . Hence,

x1 = x0 −∇2f(x0)
−1∇f(x0) = x0 −M−1(Mx0 − q) = M−1q = x?.

EPFL Machine Learning and Optimization Laboratory 28/29

Bibliography

Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu.
A convergence analysis of gradient descent for deep linear neural networks.
CoRR, abs/1810.02281, 2018.

EPFL Machine Learning and Optimization Laboratory 29/29

