Optimization for Machine Learning CS-439

Lecture 7: Non-convex opt., Newton's Method

Martin Jaggi

EPFL - github.com/epfml/OptML_course

April 5, 2019

Trajectory Analysis

Even if the "landscape" (graph) of a nonconvex function has local minima, saddle points, and flat parts, gradient descent may avoid them and still converge to a global minimum.

For this, one needs a good starting point and some theoretical understanding of what happens when we start there—this is **trajectory analysis**.

2018: trajectory analysis for training deep linear linear neural networks, under suitable conditions [ACGH18].

Here: vastly simplified setting that allows us to show the main ideas (and limitations).

Linear models with several outputs

Recall: Learning linear models

- igstarrow n inputs $\mathbf{x}_1, \ldots, \mathbf{x}_n$, where each input $\mathbf{x}_i \in \mathbb{R}^d$
- $n \text{ outputs } y_1, \ldots, y_n \in \mathbb{R}$
- Hypothesis (after centering):

$$y_i \approx \mathbf{w}^\top x_i$$

for a weight vector $\mathbf{w} = (w_1, \dots, w_d) \in \mathbb{R}^d$ to be learned.

Now more than one output value:

- n outputs $\mathbf{y}_1, \dots, \mathbf{y}_n$, where each output $\mathbf{y}_i \in \mathbb{R}^m$
- ► Hypothesis:

 $\mathbf{y}_i \approx W \mathbf{x}_i,$

for a weight matrix $W \in \mathbb{R}^{m \times d}$ to be learned.

Minimizing the least squares error

Compute

$$W^{\star} = \operatorname{argmin}_{W \in \mathbb{R}^{m \times d}} \sum_{i=1}^{n} \|W\mathbf{x}_{i} - \mathbf{y}_{i}\|^{2}.$$

•
$$X \in \mathbb{R}^{d imes n}$$
: matrix whose columns are the \mathbf{x}_i

• $Y \in \mathbb{R}^{m \times n}$: matrix whose columns are the \mathbf{y}_i

Then

$$W^{\star} = \operatorname*{argmin}_{W \in \mathbb{R}^{m \times d}} \|WX - Y\|_F^2,$$

where $||A||_F = \sqrt{\sum_{i,j} a_{ij}^2}$ is the Frobenius norm of a matrix A.

Frobenius norm of $A = \mathsf{Euclidean}$ norm of vec(A) ("flattening" of A)

Minimizing the least squares error II

 $W^{\star} = \operatorname*{argmin}_{W \in \mathbb{R}^{m \times d}} \|WX - Y\|_{F}^{2}$

is the global minimum of a convex quadratic function f(W).

To find W^{\star} , solve $\nabla f(W) = \mathbf{0}$ (system of linear equations).

 \Leftrightarrow training a linear neural network with one layer under least squares error.

$$\mathbf{x} \mapsto \mathbf{y} = W\mathbf{x}$$

W

Deep linear neural networks

$$\mathbf{x} \mapsto \mathbf{y} = W_3 W_2 W_1 \mathbf{x}$$

Not more expressive:

 $\mathbf{x} \mapsto \mathbf{y} = W_3 W_2 W_1 \mathbf{x} \quad \Leftrightarrow \quad \mathbf{x} \mapsto \mathbf{y} = W \mathbf{x}, \ W := W_3 W_2 W_1.$

Training deep linear neural networks

With ℓ layers:

$$W^{\star} = \operatorname*{argmin}_{W_{1}, W_{2}, \dots, W_{\ell}} \| W_{\ell} W_{\ell-1} \cdots W_{1} X - Y \|_{F}^{2},$$

Nonconvex function for $\ell > 1$.

Simple playground in which we can try to understand why training deep neural networks with gradient descent works.

Here: all matrices are 1×1 , $W_i = x_i, X = 1, Y = 1, \ell = d \Rightarrow f : \mathbb{R}^d \to \mathbb{R}$,

$$f(\mathbf{x}) := \frac{1}{2} \left(\prod_{k=1}^{d} x_k - 1 \right)^2$$

Toy example in our simple playground.

But analysis of gradient descent on f has similar ingredients as the one on general deep linear neural networks [ACGH18].

A simple nonconvex function

As
$$d$$
 is fixed, abbreviate $\prod_{k=1}^{d} x_k$ by $\prod_k x_k$: $f(\mathbf{x}) = \frac{1}{2} \left(\prod_k x_k - 1 \right)^2$

Level set plot

8/29

The gradient

$$abla f(\mathbf{x}) = \left(\prod_k x_k - 1\right) \left(\prod_{k \neq 1} x_k, \dots, \prod_{k \neq d} x_k\right).$$

Critical points ($\nabla f(\mathbf{x}) = \mathbf{0}$):

- $\prod_k x_k = 1$ (global minima)
 - d = 2: the hyperbola

$$\{(x_1, x_2) : x_1 x_2 = 1\}$$

 at least two of the xk are zero (saddle points)

•
$$d = 2$$
: the origin
 $(x_1, x_2) = (0, 0)$

EPFL Machine Learning and Optimization Laboratory

Negative gradient directions (followed by gradient descent)

Difficult to avoid convergence to a global minimum, but it is possible (Exercise 37).

Convergence analysis: Overview

Want to show that for any d > 1, and from anywhere in $X = {\mathbf{x} : \mathbf{x} > \mathbf{0}, \prod_k \mathbf{x}_k \le 1}$, gradient descent will converge to a global minimum.

f is not smooth over X. We show that f is smooth along the trajectory of gradient descent for suitable L, so that we get sufficient decrease

$$f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_t) - \frac{1}{2L} \|\nabla f(\mathbf{x}_t)\|^2, \quad t \ge 0.$$

Then, we cannot converge to a saddle point: all these have (at least two) zero entries and therefore function value 1/2. But for starting point $\mathbf{x}_0 \in X$, we have $f(\mathbf{x}_0) < 1/2$, so we can never reach a saddle while decreasing f.

Doesn't this imply converge to a global mimimum? No!

- Sublevel sets are unbounded, so we could in principle run off to infinity.
- Other bad things might happen (we haven't characterized what can go wrong).

Convergence analysis: Overview II

For $\mathbf{x} > \mathbf{0}, \prod_k \mathbf{x}_k \ge 1$, we also get convergence (Exercise 36).

 \Rightarrow convergence from anywhere in the interior of the positive orthant $\{x : x > 0\}$.

But there are also starting points from which gradient descent will not converge to a global minimum (Exercise 37).

Main tool: Balanced iterates

Definition

Let $\mathbf{x} > \mathbf{0}$ (componentwise), and let $c \ge 1$ be a real number. \mathbf{x} is called *c*-balanced if $x_i \le cx_j$ for all $1 \le i, j \le d$.

Any initial iterate $\mathbf{x}_0 > \mathbf{0}$ is *c*-balanced for some (possibly large) *c*.

Lemma

Let $\mathbf{x} > \mathbf{0}$ be *c*-balanced with $\prod_k x_k \leq 1$. Then for any stepsize $\gamma > 0$, $\mathbf{x}' := \mathbf{x} - \gamma \nabla f(\mathbf{x})$ satisfies $\mathbf{x}' \geq \mathbf{x}$ (componentwise) and is also *c*-balanced. Proof.

$$\Delta := -\gamma(\prod_k x_k - 1)(\prod_k x_k) \ge 0. \quad \nabla f(\mathbf{x}) = (\prod_k x_k - 1) \left(\prod_{k \ne 1} x_k, \dots, \prod_{k \ne d} x_k\right).$$

Gradient descent step:

For i, j, we have $x_i \leq cx_j$ and $x_j \leq cx_i$ ($\Leftrightarrow 1/x_i \leq c/x_j$). We therefore get

 $x'_i = x_i + \frac{\Delta}{x_i} \le cx_j + \frac{\Delta c}{x_j} = cx'_j.$

$$x'_k = x_k + \frac{\Delta}{x_k} \ge x_k, \quad k = 1, \dots, d.$$

EPFL Machine Learning and Optimization Laboratory

Bounded Hessians along the trajectory

Compute $\nabla^2 f(\mathbf{x})$:

 $\nabla^2 f(\mathbf{x})_{ij}$ is the *j*-th partial derivative of the *i*-th entry of $\nabla f(\mathbf{x})$.

$$(\nabla f)_i = \left(\prod_k x_k - 1\right) \prod_{k \neq i} x_k$$

$$\nabla^2 f(\mathbf{x})_{ij} = \begin{cases} \left(\prod_{k \neq i} x_k\right)^2, & j = i\\ 2\prod_{k \neq i} x_k \prod_{k \neq j} x_k - \prod_{k \neq i, j} x_k, & j \neq i \end{cases}$$

Need to bound $\prod_{k \neq i} x_k$, $\prod_{k \neq j} x_k$, $\prod_{k \neq i,j} x_k$!

Bounded Hessians along the trajectory II Lemma

Suppose that $\mathbf{x} > \mathbf{0}$ is *c*-balanced. Then for any $I \subseteq \{1, \ldots, d\}$, we have

$$\left(\frac{1}{c}\right)^{|I|} \left(\prod_{k} x_{k}\right)^{1-|I|/d} \leq \prod_{k \notin I} x_{k} \leq c^{|I|} \left(\prod_{k} x_{k}\right)^{1-|I|/d}$$

Proof.

For any *i*, we have $x_i^d \ge (1/c)^d \prod_k x_k$ by balancedness, hence $x_i \ge (1/c)(\prod_k x_k)^{1/d}$. It follows that

$$\prod_{k \notin I} x_k = \frac{\prod_k x_k}{\prod_{i \in I} x_i} \le \frac{\prod_k x_k}{(1/c)^{|I|} (\prod_k x_k)^{|I|/d}} = c^{|I|} \left(\prod_k x_k\right)^{1-|I|/d}$$

The lower bound follows in the same way from $x_i^d \leq c^d \prod_k x_k$.

EPFL Machine Learning and Optimization Laboratory

.

Bounded Hessians along the trajectory III

Lemma

Let $\mathbf{x} > \mathbf{0}$ be *c*-balanced with $\prod_k x_k \leq 1$. Then

$$\left\|\nabla^2 f(\mathbf{x})\right\| \leq \left\|\nabla^2 f(\mathbf{x})\right\|_F \leq 3dc^2.$$

where $||A||_F$ is the Frobenius norm and ||A|| the spectral norm.

Proof.

$$\begin{split} \|A\| &\leq \|A\|_F: \text{ Exercise 38. Now use previous lemma and } \prod_k x_k \leq 1: \\ \left|\nabla^2 f(\mathbf{x})_{ii}\right| &= |(\prod_{k \neq i} x_k)^2| \leq c^2 \\ \left|\nabla^2 f(\mathbf{x})_{ij}\right| &\leq |2 \prod_{k \neq i} x_k \prod_{k \neq j} x_k| + |\prod_{k \neq i,j} x_k| \leq 3c^2. \end{split}$$

Hence, $\left\|
abla^2 f(\mathbf{x}) \right\|_F^2 \leq 9d^2c^4$. Taking square roots, the statement follows.

Smoothness along the trajectory

Lemma

Let $\mathbf{x} > \mathbf{0}$ be c-balanced with $\prod_k x_k < 1$, $L = 3dc^2$. Let $\gamma := 1/L$. Then for all $0 \le \nu \le \gamma$,

$$\mathbf{x}' := \mathbf{x} - \nu \nabla f(\mathbf{x}) \ge \mathbf{x}$$

is c-balanced with $\prod_k x'_k \leq 1$, and f is smooth with parameter L over the line segment connecting \mathbf{x} and $\mathbf{x} - \gamma \nabla f(\mathbf{x})$.

Proof.

- $\mathbf{x}' \geq \mathbf{x} > \mathbf{0}$ is *c*-balanced by Lemma 6.5.
- $\nabla f(\mathbf{x}) \neq \mathbf{0}$ (due to $\mathbf{x}' > \mathbf{0}, \prod_k x_k < 1$, we can't be at a critical point).
- No overshooting: we can't reach ∏_k x'_k = 1 (global minimum) for ν < γ, as f is smooth with parameter L between x and x' (using previous bound on Hessians in Lemma 6.1).</p>
- By continutity, $\prod_k x'_k \leq 1$ for all $\nu \leq \gamma$.
- f is smooth with parameter L between \mathbf{x} and \mathbf{x}' for $\nu = \gamma$.

EPFL Machine Learning and Optimization Laboratory

Convergence

Theorem

Let $c \ge 1$ and $\delta > 0$ such that $\mathbf{x}_0 > \mathbf{0}$ is c-balanced with $\delta \le \prod_k (\mathbf{x}_0)_k < 1$. Choosing stepsize

$$\gamma = \frac{1}{3dc^2},$$

gradient descent satisfies

$$f(\mathbf{x}_T) \le \left(1 - \frac{\delta^2}{3c^4}\right)^T f(\mathbf{x}_0), \quad T \ge 0.$$

- Error converges to 0 exponentially fast.
- Exercise 39: iterates themselves converge (to an optimal solution).

Convergence: Proof Proof.

- For $t \ge 0$, f is smooth between \mathbf{x}_t and \mathbf{x}_{t+1} with parameter $L = 3dc^2$.
- Sufficient decrease:

$$f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_t) - \frac{1}{6dc^2} \left\| \nabla f(\mathbf{x}_t) \right\|^2.$$

For every c-balanced \mathbf{x} with $\delta \leq \prod_k x_k \leq 1$, $\left\| \nabla f(\mathbf{x}) \right\|^2$ equals

$$2f(\mathbf{x})\sum_{i=1}^{d}\left(\prod_{k\neq i} x_k\right)^2 \ge 2f(\mathbf{x})\frac{d}{c^2}\left(\prod_k x_k\right)^{2-2/d} \ge 2f(\mathbf{x})\frac{d}{c^2}\left(\prod_k x_k\right)^2 \ge 2f(\mathbf{x})\frac{d}{c^2}\delta^2.$$

• Hence,
$$f(\mathbf{x}_{t+1}) \leq f(\mathbf{x}_t) - \frac{1}{6dc^2} 2f(\mathbf{x}_t) \frac{d}{c^2} \delta^2 = f(\mathbf{x}_t) \left(1 - \frac{\delta^2}{3c^4}\right).$$

Discussion

Fast convergence as for strongly convex functions!

But there is a catch...

Consider starting solution $\mathbf{x}_0 = (1/2, \dots, 1/2)$.

 $\delta \le \prod_k (\mathbf{x}_0)_k = 2^{-d}.$

Decrease in function value by a factor of

$$\left(1-\frac{1}{3\cdot 4^d}\right),\,$$

per step.

Need $T \approx 4^d$ to reduce the initial error by a constant factor not depending on d. Problem: gradients are exponentially small in the beginning, extremely slow progress. For polynomial runtime, must start at distance $O(1/\sqrt{d})$ from optimality.

Chapter 7

Newton's Method

1-dimensional case: Newton-Raphson method

Method:

$$x_{t+1} := x_t - \frac{f(x_t)}{f'(x_t)}, \quad t \ge 0.$$

 x_{t+1} solves

$$f(x_t) + f'(x_t)(x - x_t) = 0,$$

The Babylonian method

Computing square roots: find a zero of $f(x) = x^2 - R, R \in \mathbb{R}_+$. Newton-Raphson step:

$$x_{t+1} = x_t - \frac{f(x_t)}{f'(x_t)} = x_t - \frac{x_t^2 - R}{2x_t} = \frac{1}{2} \left(x_t + \frac{R}{x_t} \right).$$

Starting from $x_0 > 0$, we have

$$x_{t+1} = \frac{1}{2} \left(x_t + \frac{R}{x_t} \right) \ge \frac{x_t}{2}.$$

Starting from $x_0 = R \ge 1$, it takes $O(\log R)$ steps to get $x_t - \sqrt{R} < 1/2$ (Exercise 40).

The Babylonian method - Takeoff

Suppose $x_0 - \sqrt{R} < 1/2$ (achievable after $O(\log R)$ steps).

$$x_{t+1} - \sqrt{R} = \frac{1}{2} \left(x_t + \frac{R}{x_t} \right) - \sqrt{R} = \frac{x_t}{2} + \frac{R}{2x_t} - \sqrt{R} = \frac{1}{2x_t} \left(x_t - \sqrt{R} \right)^2.$$

Assume $R \ge 1/4$. Then all iterates have value at least $\sqrt{R} \ge 1/2$. Hence we get

$$x_{t+1} - \sqrt{R} \le \left(x_t - \sqrt{R}\right)^2$$

$$x_T - \sqrt{R} \le \left(x_0 - \sqrt{R}\right)^{2^T} < \left(\frac{1}{2}\right)^{2^T}, \quad T \ge 0.$$

To get $x_T - \sqrt{R} < \varepsilon$, we only need $T = \log \log(\frac{1}{\varepsilon})$ steps!

EPFL Machine Learning and Optimization Laboratory

The Babylonian method - Example

R = 1000, IEEE 754 double arithmetic

- ▶ 7 steps to get $x_7 \sqrt{1000} < 1/2$
- ▶ 3 more steps to get x_{10} equal to $\sqrt{1000}$ up to machine precision (53 binary digits).
- \blacktriangleright First phase: \approx one more correct digit per iteration
- \blacktriangleright Last phase, \approx double the number of correct digits in each iteration!

Once you're close, you're there...

Newton's method for optimization

1-dimensional case: Find a global minimum x^* of a differentiable convex function $f : \mathbb{R} \to \mathbb{R}$.

Can equivalently search for a zero of the derivative f': Apply the Newton-Raphson method to f'.

Update step:

$$x_{t+1} := x_t - \frac{f'(x_t)}{f''(x_t)} = x_t - f''(x_t)^{-1} f'(x_t)$$

(needs f twice differentiable).

d-dimensional case: Newton's method for minimizing a convex function $f : \mathbb{R}^d \to \mathbb{R}$:

$$\mathbf{x}_{t+1} := \mathbf{x}_t - \nabla^2 f(\mathbf{x}_t)^{-1} \nabla f(\mathbf{x}_t)$$

Newton's method = adaptive gradient descent

General update scheme:

$$\mathbf{x}_{t+1} = \mathbf{x}_t - H(\mathbf{x}_t)\nabla f(\mathbf{x}_t),$$

where $H(\mathbf{x}) \in \mathbb{R}^{d \times d}$ is some matrix.

Newton's method: $H = \nabla^2 f(\mathbf{x}_t)^{-1}$.

Gradient descent: $H = \gamma I$.

Newton's method: "adaptive gradient descent", adaptation is w.r.t. the local geometry of the function at \mathbf{x}_t .

Convergence in one step on quadratic functions

A nondegenerate quadratic function is a function of the form

$$f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{\top} M \mathbf{x} - \mathbf{q}^{\top} \mathbf{x} + c,$$

where $M \in \mathbb{R}^{d \times d}$ is an invertible symmetric matrix, $\mathbf{q} \in \mathbb{R}^d$, $c \in R$. Let $\mathbf{x}^* = M^{-1}\mathbf{q}$ be the unique solution of $\nabla f(\mathbf{x}) = \mathbf{0}$.

• \mathbf{x}^{\star} is the unique global minimum if f is convex.

Lemma

On nondegenerate quadratic functions, with any starting point $\mathbf{x}_0 \in \mathbb{R}^d$, Newton's method yields $\mathbf{x}_1 = \mathbf{x}^*$.

Proof.

We have $\nabla f(\mathbf{x}) = M\mathbf{x} - \mathbf{q}$ (this implies $\mathbf{x}^{\star} = M^{-1}\mathbf{q}$) and $\nabla^2 f(\mathbf{x}) = M$. Hence,

$$\mathbf{x}_1 = \mathbf{x}_0 - \nabla^2 f(\mathbf{x}_0)^{-1} \nabla f(\mathbf{x}_0) = \mathbf{x}_0 - M^{-1} (M \mathbf{x}_0 - \mathbf{q}) = M^{-1} \mathbf{q} = \mathbf{x}^{\star}.$$

Bibliography

Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu. A convergence analysis of gradient descent for deep linear neural networks. *CoRR*, abs/1810.02281, 2018.