forked from huggingface/transformers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_ci_error_statistics.py
277 lines (215 loc) · 9.94 KB
/
get_ci_error_statistics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import argparse
import json
import math
import os
import subprocess
import time
import zipfile
from collections import Counter
import requests
def get_job_links(workflow_run_id):
"""Extract job names and their job links in a GitHub Actions workflow run"""
url = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100"
result = requests.get(url).json()
job_links = {}
try:
job_links.update({job["name"]: job["html_url"] for job in result["jobs"]})
pages_to_iterate_over = math.ceil((result["total_count"] - 100) / 100)
for i in range(pages_to_iterate_over):
result = requests.get(url + f"&page={i + 2}").json()
job_links.update({job["name"]: job["html_url"] for job in result["jobs"]})
return job_links
except Exception as e:
print("Unknown error, could not fetch links.", e)
return {}
def get_artifacts_links(worflow_run_id):
"""Get all artifact links from a workflow run"""
url = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100"
result = requests.get(url).json()
artifacts = {}
try:
artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]})
pages_to_iterate_over = math.ceil((result["total_count"] - 100) / 100)
for i in range(pages_to_iterate_over):
result = requests.get(url + f"&page={i + 2}").json()
artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]})
return artifacts
except Exception as e:
print("Unknown error, could not fetch links.", e)
return {}
def download_artifact(artifact_name, artifact_url, output_dir, token):
"""Download a GitHub Action artifact from a URL.
The URL is of the from `https://api.github.com/repos/huggingface/transformers/actions/artifacts/{ARTIFACT_ID}/zip`,
but it can't be used to download directly. We need to get a redirect URL first.
See https://docs.github.com/en/rest/actions/artifacts#download-an-artifact
"""
# Get the redirect URL first
cmd = f'curl -v -H "Accept: application/vnd.github+json" -H "Authorization: token {token}" {artifact_url}'
output = subprocess.run(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
o = output.stdout.decode("utf-8")
lines = o.splitlines()
for line in lines:
if line.startswith("< Location: "):
redirect_url = line[len("< Location: ") :]
r = requests.get(redirect_url, allow_redirects=True)
p = os.path.join(output_dir, f"{artifact_name}.zip")
open(p, "wb").write(r.content)
break
def get_errors_from_single_artifact(artifact_zip_path, job_links=None):
"""Extract errors from a downloaded artifact (in .zip format)"""
errors = []
failed_tests = []
job_name = None
with zipfile.ZipFile(artifact_zip_path) as z:
for filename in z.namelist():
if not os.path.isdir(filename):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(filename) as f:
for line in f:
line = line.decode("UTF-8").strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
error_line = line[: line.index(": ")]
error = line[line.index(": ") + len(": ") :]
errors.append([error_line, error])
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith("FAILED "):
# `test` is the test method that failed
test = line[len("FAILED ") :]
failed_tests.append(test)
elif filename == "job_name.txt":
job_name = line
if len(errors) != len(failed_tests):
raise ValueError(
f"`errors` and `failed_tests` should have the same number of elements. Got {len(errors)} for `errors` "
f"and {len(failed_tests)} for `failed_tests` instead. The test reports in {artifact_zip_path} have some"
" problem."
)
job_link = None
if job_name and job_links:
job_link = job_links.get(job_name, None)
# A list with elements of the form (line of error, error, failed test)
result = [x + [y] + [job_link] for x, y in zip(errors, failed_tests)]
return result
def get_all_errors(artifact_dir, job_links=None):
"""Extract errors from all artifact files"""
errors = []
paths = [os.path.join(artifact_dir, p) for p in os.listdir(artifact_dir) if p.endswith(".zip")]
for p in paths:
errors.extend(get_errors_from_single_artifact(p, job_links=job_links))
return errors
def reduce_by_error(logs, error_filter=None):
"""count each error"""
counter = Counter()
counter.update([x[1] for x in logs])
counts = counter.most_common()
r = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
r[error] = {"count": count, "failed_tests": [(x[2], x[0]) for x in logs if x[1] == error]}
r = dict(sorted(r.items(), key=lambda item: item[1]["count"], reverse=True))
return r
def get_model(test):
"""Get the model name from a test method"""
test = test.split("::")[0]
if test.startswith("tests/models/"):
test = test.split("/")[2]
else:
test = None
return test
def reduce_by_model(logs, error_filter=None):
"""count each error per model"""
logs = [(x[0], x[1], get_model(x[2])) for x in logs]
logs = [x for x in logs if x[2] is not None]
tests = {x[2] for x in logs}
r = {}
for test in tests:
counter = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test])
counts = counter.most_common()
error_counts = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
n_errors = sum(error_counts.values())
if n_errors > 0:
r[test] = {"count": n_errors, "errors": error_counts}
r = dict(sorted(r.items(), key=lambda item: item[1]["count"], reverse=True))
return r
def make_github_table(reduced_by_error):
header = "| no. | error | status |"
sep = "|-:|:-|:-|"
lines = [header, sep]
for error in reduced_by_error:
count = reduced_by_error[error]["count"]
line = f"| {count} | {error[:100]} | |"
lines.append(line)
return "\n".join(lines)
def make_github_table_per_model(reduced_by_model):
header = "| model | no. of errors | major error | count |"
sep = "|-:|-:|-:|-:|"
lines = [header, sep]
for model in reduced_by_model:
count = reduced_by_model[model]["count"]
error, _count = list(reduced_by_model[model]["errors"].items())[0]
line = f"| {model} | {count} | {error[:60]} | {_count} |"
lines.append(line)
return "\n".join(lines)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--workflow_run_id", default=None, type=str, required=True, help="A GitHub Actions workflow run id."
)
parser.add_argument(
"--output_dir",
default=None,
type=str,
required=True,
help="Where to store the downloaded artifacts and other result files.",
)
parser.add_argument(
"--token", default=None, type=str, required=True, help="A token that has actions:read permission."
)
args = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
_job_links = get_job_links(args.workflow_run_id)
job_links = {}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
index = k.find(" / ")
k = k[index + len(" / ") :]
job_links[k] = v
with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
artifacts = get_artifacts_links(args.workflow_run_id)
with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
errors = get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
counter = Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
most_common = counter.most_common(30)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
reduced_by_error = reduce_by_error(errors)
reduced_by_model = reduce_by_model(errors)
s1 = make_github_table(reduced_by_error)
s2 = make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp:
fp.write(s1)
with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp:
fp.write(s2)