forked from rerun-io/rerun
-
Notifications
You must be signed in to change notification settings - Fork 0
/
store_dump.rs
227 lines (195 loc) · 7.98 KB
/
store_dump.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
use std::collections::BTreeMap;
use arrow2::Either;
use re_log_types::{
DataCellColumn, DataTable, ErasedTimeVec, RowIdVec, TableId, TimeRange, Timeline,
};
use crate::{
store::{IndexedBucketInner, PersistentIndexedTable},
DataStore, IndexedBucket,
};
// ---
impl DataStore {
/// Serializes the entire datastore into one big sorted [`DataTable`].
///
/// Individual [`re_log_types::DataRow`]s that were split apart due to bucketing are merged back together.
///
/// Beware: this is extremely costly, don't use this in hot paths.
pub fn to_data_table(&self) -> DataTable {
re_log_types::DataTable::from_rows(re_log_types::TableId::random(), {
use re_log_types::{DataRow, RowId};
let mut rows = ahash::HashMap::<RowId, DataRow>::default();
for row in self
.to_data_tables(None)
.flat_map(|t| t.to_rows().collect::<Vec<_>>())
{
match rows.entry(row.row_id()) {
std::collections::hash_map::Entry::Occupied(mut entry) => {
for (timeline, time) in row.timepoint() {
entry.get_mut().timepoint.insert(*timeline, *time);
}
}
std::collections::hash_map::Entry::Vacant(entry) => {
entry.insert(row);
}
}
}
let mut rows = rows.into_values().collect::<Vec<_>>();
rows.sort_by_key(|row| (row.timepoint.clone(), row.row_id));
rows
})
}
/// Serializes the entire datastore into an iterator of [`DataTable`]s, where each table
/// corresponds 1-to-1 to an internal bucket.
// TODO(#1793): This shouldn't dump cluster keys that were autogenerated.
pub fn to_data_tables(
&self,
time_filter: Option<(Timeline, TimeRange)>,
) -> impl Iterator<Item = DataTable> + '_ {
let timeless = self.dump_timeless_tables();
let temporal = if let Some(time_filter) = time_filter {
Either::Left(self.dump_temporal_tables_filtered(time_filter))
} else {
Either::Right(self.dump_temporal_tables())
};
timeless.chain(temporal)
}
fn dump_timeless_tables(&self) -> impl Iterator<Item = DataTable> + '_ {
self.timeless_tables.values().map(|table| {
re_tracing::profile_scope!("timeless_table");
let PersistentIndexedTable {
ent_path,
cluster_key: _,
col_insert_id: _,
col_row_id,
col_num_instances,
columns,
} = table;
DataTable {
table_id: TableId::random(),
col_row_id: col_row_id.clone(),
col_timelines: Default::default(),
col_entity_path: std::iter::repeat_with(|| ent_path.clone())
.take(table.num_rows() as _)
.collect(),
col_num_instances: col_num_instances.clone(),
columns: columns.clone().into_iter().collect(), // shallow
}
})
}
fn dump_temporal_tables(&self) -> impl Iterator<Item = DataTable> + '_ {
self.tables.values().flat_map(|table| {
re_tracing::profile_scope!("temporal_table");
table.buckets.values().map(move |bucket| {
re_tracing::profile_scope!("temporal_bucket");
bucket.sort_indices_if_needed();
let IndexedBucket {
timeline,
cluster_key: _,
inner,
} = bucket;
let IndexedBucketInner {
is_sorted,
time_range: _,
col_time,
col_insert_id: _,
col_row_id,
col_num_instances,
columns,
size_bytes: _,
} = &*inner.read();
debug_assert!(is_sorted);
DataTable {
table_id: TableId::random(),
col_row_id: col_row_id.clone(),
col_timelines: [(*timeline, col_time.iter().copied().map(Some).collect())]
.into(),
col_entity_path: std::iter::repeat_with(|| table.ent_path.clone())
.take(col_row_id.len())
.collect(),
col_num_instances: col_num_instances.clone(),
columns: columns.clone().into_iter().collect(), // shallow
}
})
})
}
fn dump_temporal_tables_filtered(
&self,
(timeline_filter, time_filter): (Timeline, TimeRange),
) -> impl Iterator<Item = DataTable> + '_ {
self.tables
.values()
.filter_map(move |table| {
re_tracing::profile_scope!("temporal_table_filtered");
if table.timeline != timeline_filter {
return None;
}
Some(table.buckets.values().filter_map(move |bucket| {
re_tracing::profile_scope!("temporal_bucket_filtered");
bucket.sort_indices_if_needed();
let IndexedBucket {
timeline,
cluster_key: _,
inner,
} = bucket;
let IndexedBucketInner {
is_sorted,
time_range,
col_time,
col_insert_id: _,
col_row_id,
col_num_instances,
columns,
size_bytes: _,
} = &*inner.read();
debug_assert!(is_sorted);
if !time_range.intersects(time_filter) {
return None;
}
let col_row_id: RowIdVec =
filter_column(col_time, col_row_id.iter(), time_filter).collect();
// NOTE: Shouldn't ever happen due to check above, but better safe than
// sorry...
debug_assert!(!col_row_id.is_empty());
if col_row_id.is_empty() {
return None;
}
let col_timelines = [(
*timeline,
filter_column(col_time, col_time.iter(), time_filter)
.map(Some)
.collect(),
)]
.into();
let col_entity_path = std::iter::repeat_with(|| table.ent_path.clone())
.take(col_row_id.len())
.collect();
let col_num_instances =
filter_column(col_time, col_num_instances.iter(), time_filter).collect();
let mut columns2 = BTreeMap::default();
for (component, column) in columns {
let column = filter_column(col_time, column.iter(), time_filter).collect();
columns2.insert(*component, DataCellColumn(column));
}
Some(DataTable {
table_id: TableId::random(),
col_row_id,
col_timelines,
col_entity_path,
col_num_instances,
columns: columns2,
})
}))
})
.flatten()
}
}
fn filter_column<'a, T: 'a + Clone>(
col_time: &'a ErasedTimeVec,
column: impl Iterator<Item = &'a T> + 'a,
time_filter: TimeRange,
) -> impl Iterator<Item = T> + 'a {
col_time
.iter()
.zip(column)
.filter_map(move |(time, v)| time_filter.contains((*time).into()).then(|| v.clone()))
}