forked from rerun-io/rerun
-
Notifications
You must be signed in to change notification settings - Fork 0
/
store_read.rs
1120 lines (1001 loc) · 40.3 KB
/
store_read.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
use std::{ops::RangeBounds, sync::atomic::Ordering};
use itertools::Itertools;
use nohash_hasher::IntSet;
use re_log::trace;
use re_log_types::{DataCell, EntityPath, RowId, TimeInt, TimePoint, TimeRange, Timeline};
use re_types::ComponentName;
use smallvec::SmallVec;
use crate::{DataStore, IndexedBucket, IndexedBucketInner, IndexedTable, PersistentIndexedTable};
// --- Queries ---
/// A query at a given time, for a given timeline.
///
/// Get the latest version of the data available at this time.
#[derive(Clone)]
pub struct LatestAtQuery {
pub timeline: Timeline,
pub at: TimeInt,
}
impl std::fmt::Debug for LatestAtQuery {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.write_fmt(format_args!(
"<latest at {} on {:?} (including timeless)>",
self.timeline.typ().format(self.at),
self.timeline.name(),
))
}
}
impl LatestAtQuery {
pub const fn new(timeline: Timeline, at: TimeInt) -> Self {
Self { timeline, at }
}
pub const fn latest(timeline: Timeline) -> Self {
Self {
timeline,
at: TimeInt::MAX,
}
}
}
/// A query over a time range, for a given timeline.
///
/// Get all the data within this time interval, plus the latest one before the start of the
/// interval.
///
/// Motivation: all data is considered alive until the next logging to the same component path.
#[derive(Clone)]
pub struct RangeQuery {
pub timeline: Timeline,
pub range: TimeRange,
}
impl std::fmt::Debug for RangeQuery {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.write_fmt(format_args!(
"<ranging from {} to {} (all inclusive) on {:?} ({} timeless)>",
self.timeline.typ().format(self.range.min),
self.timeline.typ().format(self.range.max),
self.timeline.name(),
if self.range.min == TimeInt::MIN {
"including"
} else {
"excluding"
}
))
}
}
impl RangeQuery {
pub const fn new(timeline: Timeline, range: TimeRange) -> Self {
Self { timeline, range }
}
}
// --- Data store ---
impl DataStore {
/// Retrieve all the [`ComponentName`]s that have been written to for a given [`EntityPath`] on
/// a specific [`Timeline`].
///
/// # Temporal semantics
///
/// In addition to the temporal results, this also includes all [`ComponentName`]s present in
/// the timeless tables for this entity.
pub fn all_components(
&self,
timeline: &Timeline,
ent_path: &EntityPath,
) -> Option<Vec<ComponentName>> {
re_tracing::profile_function!();
// TODO(cmc): kind & query_id need to somehow propagate through the span system.
self.query_id.fetch_add(1, Ordering::Relaxed);
let ent_path_hash = ent_path.hash();
trace!(
kind = "all_components",
id = self.query_id.load(Ordering::Relaxed),
timeline = ?timeline,
entity = %ent_path,
"query started…"
);
let timeless: Option<IntSet<_>> = self
.timeless_tables
.get(&ent_path_hash)
.map(|table| table.columns.keys().cloned().collect());
let temporal = self
.tables
.get(&(*timeline, ent_path_hash))
.map(|table| &table.all_components);
let components = match (timeless, temporal) {
(None, Some(temporal)) => temporal.iter().cloned().collect_vec(),
(Some(timeless), None) => timeless.iter().cloned().collect_vec(),
(Some(timeless), Some(temporal)) => timeless.union(temporal).cloned().collect_vec(),
(None, None) => return None,
};
trace!(
kind = "latest_components_at",
id = self.query_id.load(Ordering::Relaxed),
timeline = ?timeline,
entity = %ent_path,
?components,
"found components"
);
Some(components)
}
/// Queries the datastore for the cells of the specified `components`, as seen from the point
/// of view of the so-called `primary` component.
///
/// Returns an array of [`DataCell`]s on success, or `None` otherwise.
/// Success is defined by one thing and thing only: whether a cell could be found for the
/// `primary` component.
/// The presence or absence of secondary components has no effect on the success criteria.
///
/// # Temporal semantics
///
/// Temporal indices take precedence, then timeless tables are queried to fill the holes left
/// by missing temporal data.
///
/// ## Example
///
/// The following example demonstrate how to fetch the latest cells for a given component
/// and its associated cluster key, and wrap the result into a nice-to-work-with polars's
/// dataframe.
///
/// ```rust
/// # use polars_core::{prelude::*, series::Series};
/// # use re_log_types::{EntityPath, RowId, TimeInt};
/// # use re_types::{ComponentName};
/// # use re_arrow_store::{DataStore, LatestAtQuery, RangeQuery};
/// #
/// pub fn latest_component(
/// store: &DataStore,
/// query: &LatestAtQuery,
/// ent_path: &EntityPath,
/// primary: ComponentName,
/// ) -> anyhow::Result<DataFrame> {
/// let cluster_key = store.cluster_key();
///
/// let components = &[cluster_key, primary];
/// let (_, cells) = store
/// .latest_at(&query, ent_path, primary, components)
/// .unwrap_or((RowId::ZERO, [(); 2].map(|_| None)));
///
/// let series: Result<Vec<_>, _> = cells
/// .iter()
/// .flatten()
/// .map(|cell| {
/// Series::try_from((
/// cell.component_name().as_str(),
/// cell.to_arrow(),
/// ))
/// })
/// .collect();
///
/// DataFrame::new(series?).map_err(Into::into)
/// }
/// ```
///
/// Thanks to the cluster key, one is free to repeat this process as many times as they wish,
/// then reduce the resulting dataframes down to one by joining them as they see fit.
/// This is what our `latest_components` polars helper does.
///
/// For more information about working with dataframes, see the `polars` feature.
pub fn latest_at<const N: usize>(
&self,
query: &LatestAtQuery,
ent_path: &EntityPath,
primary: ComponentName,
components: &[ComponentName; N],
) -> Option<(RowId, [Option<DataCell>; N])> {
// TODO(cmc): kind & query_id need to somehow propagate through the span system.
self.query_id.fetch_add(1, Ordering::Relaxed);
let ent_path_hash = ent_path.hash();
trace!(
kind = "latest_at",
id = self.query_id.load(Ordering::Relaxed),
query = ?query,
entity = %ent_path,
%primary,
?components,
"query started…"
);
let cells = self
.tables
.get(&(query.timeline, ent_path_hash))
.and_then(|table| {
let cells = table.latest_at(query.at, primary, components);
trace!(
kind = "latest_at",
query = ?query,
entity = %ent_path,
%primary,
?components,
timeless = false,
"row cells fetched"
);
cells
});
// If we've found everything we were looking for in the temporal table, then we can
// return the results immediately.
if cells
.as_ref()
.map_or(false, |(_, cells)| cells.iter().all(Option::is_some))
{
return cells;
}
let cells_timeless = self.timeless_tables.get(&ent_path_hash).and_then(|table| {
let cells = table.latest_at(primary, components);
trace!(
kind = "latest_at",
query = ?query,
entity = %ent_path,
%primary,
?components,
?cells,
timeless = true,
"cells fetched"
);
cells
});
// Otherwise, let's see what's in the timeless table, and then..:
match (cells, cells_timeless) {
// nothing in the timeless table: return those partial cells we got.
(Some(cells), None) => return Some(cells),
// no temporal cells, but some timeless ones: return those as-is.
(None, Some(cells_timeless)) => return Some(cells_timeless),
// we have both temporal & timeless cells: let's merge the two when it makes sense
// and return the end result.
(Some((row_id, mut cells)), Some((_, cells_timeless))) => {
for (i, row_idx) in cells_timeless.into_iter().enumerate() {
if cells[i].is_none() {
cells[i] = row_idx;
}
}
return Some((row_id, cells));
}
// no cells at all.
(None, None) => {}
}
trace!(
kind = "latest_at",
query = ?query,
entity = %ent_path,
%primary,
?components,
"primary component not found"
);
None
}
/// Iterates the datastore in order to return the cells of the the specified `components`,
/// as seen from the point of view of the so-called `primary` component, for the given time
/// range.
///
/// For each and every relevant row that is found, the returned iterator will yield an array
/// that is filled with the cells of each and every component in `components`, or `None` if
/// said component is not available in that row.
/// A row is considered iff it contains data for the `primary` component.
///
/// This method cannot fail! If there's no data to return, an empty iterator is returned.
///
/// ⚠ Contrary to latest-at queries, range queries can and will yield multiple rows for a
/// single timestamp if that timestamp happens to hold multiple entries for the `primary`
/// component.
/// On the contrary, they won't yield any rows that don't contain an actual value for the
/// `primary` component, _even if said rows do contain a value for one the secondaries_!
///
/// # Temporal semantics
///
/// Yields the contents of the temporal indices.
/// Iff the query's time range starts at `TimeInt::MIN`, this will yield the contents of the
/// timeless tables before anything else.
///
/// When yielding timeless entries, the associated time will be `None`.
///
/// ## Example
///
/// The following example demonstrate how to range over the cells of a given
/// component and its associated cluster key, and turn the results into a nice-to-work-with
/// iterator of polars's dataframe.
/// Additionally, it yields the latest-at state of the component at the start of the time range,
/// if available.
///
/// ```rust
/// # use arrow2::array::Array;
/// # use polars_core::{prelude::*, series::Series};
/// # use re_log_types::{DataCell, EntityPath, RowId, TimeInt};
/// # use re_arrow_store::{DataStore, LatestAtQuery, RangeQuery};
/// # use re_types::ComponentName;
/// #
/// # pub fn dataframe_from_cells<const N: usize>(
/// # cells: [Option<DataCell>; N],
/// # ) -> anyhow::Result<DataFrame> {
/// # let series: Result<Vec<_>, _> = cells
/// # .iter()
/// # .flatten()
/// # .map(|cell| {
/// # Series::try_from((
/// # cell.component_name().as_ref(),
/// # cell.to_arrow(),
/// # ))
/// # })
/// # .collect();
/// #
/// # DataFrame::new(series?).map_err(Into::into)
/// # }
/// #
/// pub fn range_component<'a>(
/// store: &'a DataStore,
/// query: &'a RangeQuery,
/// ent_path: &'a EntityPath,
/// primary: ComponentName,
/// ) -> impl Iterator<Item = anyhow::Result<(Option<TimeInt>, DataFrame)>> + 'a {
/// let cluster_key = store.cluster_key();
///
/// let components = [cluster_key, primary];
///
/// // Fetch the latest-at data just before the start of the time range.
/// let latest_time = query.range.min.as_i64().saturating_sub(1).into();
/// let df_latest = {
/// let query = LatestAtQuery::new(query.timeline, latest_time);
/// let (_, cells) = store
/// .latest_at(&query, ent_path, primary, &components)
/// .unwrap_or((RowId::ZERO, [(); 2].map(|_| None)));
/// dataframe_from_cells(cells)
/// };
///
/// // Send the latest-at state before anything else..
/// std::iter::once(df_latest.map(|df| (Some(latest_time), df)))
/// // ..but only if it's not an empty dataframe.
/// .filter(|df| df.as_ref().map_or(true, |(_, df)| !df.is_empty()))
/// .chain(store.range(query, ent_path, components).map(
/// move |(time, _, cells)| dataframe_from_cells(cells).map(|df| (time, df))
/// ))
/// }
/// ```
///
/// Thanks to the cluster key, one is free to repeat this process as many times as they wish,
/// then join the resulting streams to yield a full-fledged dataframe for every update of the
/// primary component.
/// This is what our `range_components` polars helper does.
///
/// For more information about working with dataframes, see the `polars` feature.
pub fn range<'a, const N: usize>(
&'a self,
query: &RangeQuery,
ent_path: &EntityPath,
components: [ComponentName; N],
) -> impl Iterator<Item = (Option<TimeInt>, RowId, [Option<DataCell>; N])> + 'a {
// Beware! This merely measures the time it takes to gather all the necessary metadata
// for building the returned iterator.
re_tracing::profile_function!();
// TODO(cmc): kind & query_id need to somehow propagate through the span system.
self.query_id.fetch_add(1, Ordering::Relaxed);
let ent_path_hash = ent_path.hash();
trace!(
kind = "range",
id = self.query_id.load(Ordering::Relaxed),
query = ?query,
entity = %ent_path,
?components,
"query started…"
);
let temporal = self
.tables
.get(&(query.timeline, ent_path_hash))
.map(|index| index.range(query.range, components))
.into_iter()
.flatten()
.map(|(time, row_id, cells)| (Some(time), row_id, cells));
if query.range.min == TimeInt::MIN {
let timeless = self
.timeless_tables
.get(&ent_path_hash)
.map(|index| {
index
.range(components)
.map(|(row_id, cells)| (None, row_id, cells))
})
.into_iter()
.flatten();
itertools::Either::Left(timeless.chain(temporal))
} else {
itertools::Either::Right(temporal)
}
}
pub fn get_msg_metadata(&self, row_id: &RowId) -> Option<&TimePoint> {
re_tracing::profile_function!();
self.metadata_registry.get(row_id)
}
/// Sort all unsorted indices in the store.
pub fn sort_indices_if_needed(&mut self) {
for index in self.tables.values_mut() {
index.sort_indices_if_needed();
}
}
}
// --- Temporal ---
impl IndexedTable {
/// Queries the table for the cells of the specified `components`, as seen from the point
/// of view of the so-called `primary` component.
///
/// Returns an array of [`DataCell`]s on success, or `None` iff no cell could be found for
/// the `primary` component.
pub fn latest_at<const N: usize>(
&self,
time: TimeInt,
primary: ComponentName,
components: &[ComponentName; N],
) -> Option<(RowId, [Option<DataCell>; N])> {
// Early-exit if this entire table is unaware of this component.
if !self.all_components.contains(&primary) {
return None;
}
let timeline = self.timeline;
// The time we're looking for gives us an upper bound: all components must be indexed
// in either this bucket _or any of those that come before_!
//
// That is because secondary columns allow for null values, which forces us to not only
// walk backwards within an indexed bucket, but sometimes even walk backwards across
// multiple indexed buckets within the same table!
let buckets = self
.range_buckets_rev(..=time)
.map(|(_, bucket)| bucket)
.enumerate();
for (attempt, bucket) in buckets {
trace!(
kind = "latest_at",
timeline = %timeline.name(),
time = timeline.typ().format(time),
%primary,
?components,
attempt,
bucket_time_range = timeline.typ().format_range(bucket.inner.read().time_range),
"found candidate bucket"
);
if let cells @ Some(_) = bucket.latest_at(time, primary, components) {
return cells; // found at least the primary component!
}
}
None // primary component not found
}
/// Iterates the table in order to return the cells of the the specified `components`,
/// as seen from the point of view of the so-called `primary` component, for the given time
/// range.
///
/// For each and every relevant row that is found, the returned iterator will yield an array
/// that is filled with the cells of each and every component in `components`, or `None` if
/// said component is not available in that row.
/// A row is considered iff it contains data for the `primary` component.
///
/// This method cannot fail! If there's no data to return, an empty iterator is returned.
pub fn range<const N: usize>(
&self,
time_range: TimeRange,
components: [ComponentName; N],
) -> impl Iterator<Item = (TimeInt, RowId, [Option<DataCell>; N])> + '_ {
// Beware! This merely measures the time it takes to gather all the necessary metadata
// for building the returned iterator.
re_tracing::profile_function!();
let timeline = self.timeline;
// We need to find the _indexing time_ that corresponds to this time range's minimum bound!
let (time_range_min, _) = self.find_bucket(time_range.min);
self.range_buckets(time_range_min..=time_range.max)
.map(|(_, bucket)| bucket)
.enumerate()
.flat_map(move |(bucket_nr, bucket)| {
trace!(
kind = "range",
bucket_nr,
bucket_time_range =
timeline.typ().format_range(bucket.inner.read().time_range),
timeline = %timeline.name(),
?time_range,
?components,
"found bucket in range"
);
bucket.range(time_range, components)
})
}
/// Returns the indexed bucket whose time range covers the given `time`.
///
/// In addition to returning a reference to the `IndexedBucket` itself, this also returns its
/// _indexing time_, which is different from its minimum time range bound!
///
/// See [`IndexedTable::buckets`] for more information.
pub fn find_bucket(&self, time: TimeInt) -> (TimeInt, &IndexedBucket) {
re_tracing::profile_function!();
// This cannot fail, `iter_bucket` is guaranteed to always yield at least one bucket,
// since indexed tables always spawn with a default bucket that covers [-∞;+∞].
self.range_buckets_rev(..=time).next().unwrap()
}
/// Returns the indexed bucket whose time range covers the given `time`.
///
/// In addition to returning a reference to the `IndexedBucket` itself, this also returns its
/// _indexing time_, which is different from its minimum time range bound!
///
/// See [`IndexedTable::buckets`] for more information.
pub fn find_bucket_mut(&mut self, time: TimeInt) -> (TimeInt, &mut IndexedBucket) {
re_tracing::profile_function!();
// This cannot fail, `iter_bucket_mut` is guaranteed to always yield at least one bucket,
// since indexed tables always spawn with a default bucket that covers [-∞;+∞].
self.range_bucket_rev_mut(..=time).next().unwrap()
}
/// Returns an iterator that is guaranteed to yield at least one bucket, which is the bucket
/// whose time range covers the start bound of the given `time_range`.
///
/// It then continues yielding buckets until it runs out, in increasing time range order.
///
/// In addition to yielding references to the `IndexedBucket`s themselves, this also returns
/// their _indexing times_, which are different from their minimum time range bounds!
///
/// See [`IndexedTable::buckets`] for more information.
pub fn range_buckets(
&self,
time_range: impl RangeBounds<TimeInt>,
) -> impl Iterator<Item = (TimeInt, &IndexedBucket)> {
// Beware! This merely measures the time it takes to gather all the necessary metadata
// for building the returned iterator.
re_tracing::profile_function!();
self.buckets
.range(time_range)
.map(|(time, bucket)| (*time, bucket))
}
/// Returns an iterator that is guaranteed to yield at least one bucket, which is the bucket
/// whose time range covers the end bound of the given `time_range`.
///
/// It then continues yielding buckets until it runs out, in decreasing time range order.
///
/// In addition to yielding references to the `IndexedBucket`s themselves, this also returns
/// their _indexing times_, which are different from their minimum time range bounds!
///
/// See [`IndexedTable::buckets`] for more information.
pub fn range_buckets_rev(
&self,
time_range: impl RangeBounds<TimeInt>,
) -> impl Iterator<Item = (TimeInt, &IndexedBucket)> {
// Beware! This merely measures the time it takes to gather all the necessary metadata
// for building the returned iterator.
re_tracing::profile_function!();
self.buckets
.range(time_range)
.rev()
.map(|(time, bucket)| (*time, bucket))
}
/// Returns an iterator that is guaranteed to yield at least one bucket, which is the bucket
/// whose time range covers the end bound of the given `time_range`.
///
/// It then continues yielding buckets until it runs out, in decreasing time range order.
///
/// In addition to yielding references to the `IndexedBucket`s themselves, this also returns
/// their _indexing times_, which are different from their minimum time range bounds!
///
/// See [`IndexedTable::buckets`] for more information.
pub fn range_bucket_rev_mut(
&mut self,
time_range: impl RangeBounds<TimeInt>,
) -> impl Iterator<Item = (TimeInt, &mut IndexedBucket)> {
// Beware! This merely measures the time it takes to gather all the necessary metadata
// for building the returned iterator.
re_tracing::profile_function!();
self.buckets
.range_mut(time_range)
.rev()
.map(|(time, bucket)| (*time, bucket))
}
/// Sort all unsorted indexed buckets in this table.
pub fn sort_indices_if_needed(&self) {
for bucket in self.buckets.values() {
bucket.sort_indices_if_needed();
}
}
}
impl IndexedBucket {
/// Sort all component indices by time, provided that's not already the case.
pub fn sort_indices_if_needed(&self) {
if self.inner.read().is_sorted {
return; // early read-only exit
}
re_tracing::profile_scope!("sort");
self.inner.write().sort();
}
/// Queries the bucket for the cells of the specified `components`, as seen from the point
/// of view of the so-called `primary` component.
///
/// Returns an array of [`DataCell`]s on success, or `None` iff no cell could be found for
/// the `primary` component.
pub fn latest_at<const N: usize>(
&self,
time: TimeInt,
primary: ComponentName,
components: &[ComponentName; N],
) -> Option<(RowId, [Option<DataCell>; N])> {
self.sort_indices_if_needed();
let IndexedBucketInner {
is_sorted,
time_range: _,
col_time,
col_insert_id: _,
col_row_id,
col_num_instances: _,
columns,
size_bytes: _,
} = &*self.inner.read();
debug_assert!(is_sorted);
// Early-exit if this bucket is unaware of this component.
let column = columns.get(&primary)?;
trace!(
kind = "latest_at",
%primary,
?components,
timeline = %self.timeline.name(),
time = self.timeline.typ().format(time),
"searching for primary & secondary cells…"
);
let time_row_nr = col_time.partition_point(|t| *t <= time.as_i64()) as i64;
// The partition point is always _beyond_ the index that we're looking for.
// A partition point of 0 thus means that we're trying to query for data that lives
// _before_ the beginning of time… there's nothing to be found there.
if time_row_nr == 0 {
return None;
}
// The partition point is always _beyond_ the index that we're looking for; we need
// to step back to find what we came for.
let primary_row_nr = time_row_nr - 1;
trace!(
kind = "latest_at",
%primary,
?components,
timeline = %self.timeline.name(),
time = self.timeline.typ().format(time),
%primary_row_nr,
"found primary row number",
);
// find the secondary row number, and the associated cells.
let mut secondary_row_nr = primary_row_nr;
while column[secondary_row_nr as usize].is_none() {
if secondary_row_nr == 0 {
trace!(
kind = "latest_at",
%primary,
?components,
timeline = %self.timeline.name(),
time = self.timeline.typ().format(time),
%primary_row_nr,
"no secondary row number found",
);
return None;
}
secondary_row_nr -= 1;
}
trace!(
kind = "latest_at",
%primary,
?components,
timeline = %self.timeline.name(),
time = self.timeline.typ().format(time),
%primary_row_nr, %secondary_row_nr,
"found secondary row number",
);
debug_assert!(column[secondary_row_nr as usize].is_some());
let mut cells = [(); N].map(|_| None);
for (i, component) in components.iter().enumerate() {
if let Some(column) = columns.get(component) {
if let Some(cell) = &column[secondary_row_nr as usize] {
trace!(
kind = "latest_at",
%primary,
%component,
timeline = %self.timeline.name(),
time = self.timeline.typ().format(time),
%primary_row_nr, %secondary_row_nr,
"found cell",
);
cells[i] = Some(cell.clone() /* shallow */);
}
}
}
Some((col_row_id[secondary_row_nr as usize], cells))
}
/// Iterates the bucket in order to return the cells of the the specified `components`,
/// as seen from the point of view of the so-called `primary` component, for the given time
/// range.
///
/// For each and every relevant row that is found, the returned iterator will yield an array
/// that is filled with the cells of each and every component in `components`, or `None` if
/// said component is not available in that row.
/// A row is considered iff it contains data for the `primary` component.
///
/// This method cannot fail! If there's no data to return, an empty iterator is returned.
pub fn range<const N: usize>(
&self,
time_range: TimeRange,
components: [ComponentName; N],
) -> impl Iterator<Item = (TimeInt, RowId, [Option<DataCell>; N])> + '_ {
self.sort_indices_if_needed();
let IndexedBucketInner {
is_sorted,
time_range: bucket_time_range,
col_time,
col_insert_id: _,
col_row_id,
col_num_instances: _,
columns,
size_bytes: _,
} = &*self.inner.read();
debug_assert!(is_sorted);
let bucket_time_range = *bucket_time_range;
// Early-exit if this bucket is unaware of any of our components of interest.
if components
.iter()
.all(|component| columns.get(component).is_none())
{
return itertools::Either::Right(std::iter::empty());
}
// Beware! This merely measures the time it takes to gather all the necessary metadata
// for building the returned iterator.
re_tracing::profile_function!();
trace!(
kind = "range",
bucket_time_range = self.timeline.typ().format_range(bucket_time_range),
?components,
timeline = %self.timeline.name(),
time_range = self.timeline.typ().format_range(time_range),
"searching for time & component cell numbers…"
);
let time_row_nr = col_time.partition_point(|t| *t < time_range.min.as_i64()) as u64;
trace!(
kind = "range",
bucket_time_range = self.timeline.typ().format_range(bucket_time_range),
?components,
timeline = %self.timeline.name(),
time_range = self.timeline.typ().format_range(time_range),
%time_row_nr,
"found time row number",
);
// TODO(cmc): Cloning these is obviously not great and will need to be addressed at
// some point.
// But, really, it's not _that_ bad either: these are either integers or erased pointers,
// and e.g. with the default configuration there are only 1024 of them (times the number
// of components).
let col_time = col_time.clone();
let col_row_id = col_row_id.clone();
let mut columns = columns.clone(); // shallow
// We have found the index of the first row that possibly contains data for any single one
// of the components we're interested in.
//
// Now we need to iterate through every remaining rows in the bucket and yield any that
// contains data for these components and is still within the time range.
let cells = col_time
.into_iter()
.skip(time_row_nr as usize)
// don't go beyond the time range we're interested in!
.filter(move |time| time_range.contains((*time).into()))
.enumerate()
.filter_map(move |(time_row_offset, time)| {
let row_nr = time_row_nr + time_row_offset as u64;
let mut cells = [(); N].map(|_| None);
for (i, component) in components.iter().enumerate() {
if let Some(column) = columns.get_mut(component) {
cells[i] = column[row_nr as usize].take();
}
}
// We only yield rows that contain data for at least one of the components of
// interest.
if cells.iter().all(Option::is_none) {
return None;
}
let row_id = col_row_id[row_nr as usize];
trace!(
kind = "range",
bucket_time_range =
self.timeline.typ().format_range(bucket_time_range),
?components,
timeline = %self.timeline.name(),
time_range = self.timeline.typ().format_range(time_range),
%row_nr,
%row_id,
?cells,
"yielding cells",
);
Some((time.into(), row_id, cells))
});
itertools::Either::Left(cells)
}
/// Whether the indices in this `IndexedBucket` are sorted
pub fn is_sorted(&self) -> bool {
self.inner.read().is_sorted
}
}
impl IndexedBucketInner {
pub fn sort(&mut self) {
let Self {
is_sorted,
time_range: _,
col_time,
col_insert_id,
col_row_id,
col_num_instances,
columns,
size_bytes: _,
} = self;
if *is_sorted {
return;
}
re_tracing::profile_function!();
let swaps = {
re_tracing::profile_scope!("swaps");
let mut swaps = (0..col_time.len()).collect::<Vec<_>>();
swaps.sort_by_key(|&i| &col_time[i]);
swaps
.iter()
.copied()
.enumerate()
.map(|(to, from)| (from, to))
.collect::<Vec<_>>()
};
// Yep, the reshuffle implementation is very dumb and very slow :)
// TODO(#442): re_datastore: implement efficient shuffling on the read path.
{
re_tracing::profile_scope!("control");
fn reshuffle_control_column<T: Copy, const N: usize>(
column: &mut SmallVec<[T; N]>,
swaps: &[(usize, usize)],
) {
let source = {
re_tracing::profile_scope!("clone");
column.clone()
};
{
re_tracing::profile_scope!("rotate");
for (from, to) in swaps.iter().copied() {
column[to] = source[from];
}
}
}
reshuffle_control_column(col_time, &swaps);
if !col_insert_id.is_empty() {
reshuffle_control_column(col_insert_id, &swaps);
}
reshuffle_control_column(col_row_id, &swaps);
reshuffle_control_column(col_num_instances, &swaps);
}
{
re_tracing::profile_scope!("data");
// shuffle component columns back into a sorted state
for column in columns.values_mut() {
let mut source = {
re_tracing::profile_scope!("clone");
column.clone()
};
{
re_tracing::profile_scope!("rotate");
for (from, to) in swaps.iter().copied() {
column[to] = source[from].take();
}
}
}
}
*is_sorted = true;
}
}
// --- Timeless ---
impl PersistentIndexedTable {
/// Queries the table for the cells of the specified `components`, as seen from the point
/// of view of the so-called `primary` component.
///
/// Returns an array of [`DataCell`]s on success, or `None` iff no cell could be found for
/// the `primary` component.
fn latest_at<const N: usize>(
&self,
primary: ComponentName,
components: &[ComponentName; N],
) -> Option<(RowId, [Option<DataCell>; N])> {
if self.is_empty() {
return None;
}
// Early-exit if this bucket is unaware of this component.
let column = self.columns.get(&primary)?;
re_tracing::profile_function!();
trace!(
kind = "latest_at",
%primary,
?components,