Stars
- All languages
- ActionScript
- AppleScript
- Arduino
- AutoHotkey
- Bikeshed
- C
- C#
- C++
- CMake
- CSS
- Clojure
- CoffeeScript
- Common Lisp
- Crystal
- Cuda
- Cython
- Dart
- Dockerfile
- Elm
- Emacs Lisp
- G-code
- GAP
- Go
- HCL
- HTML
- Handlebars
- Java
- JavaScript
- Jinja
- Julia
- Jupyter Notebook
- Kotlin
- LiveScript
- Lua
- MATLAB
- MDX
- Makefile
- Markdown
- Mathematica
- Mojo
- Mustache
- Nim
- OCaml
- Objective-C
- OpenSCAD
- PHP
- PLpgSQL
- Perl
- Processing
- Puppet
- Python
- R
- Rich Text Format
- Ruby
- Rust
- SCSS
- Scala
- Shell
- Svelte
- Swift
- TeX
- TypeScript
- VHDL
- Vim Script
- Vue
- XSLT
- Zig
- templ
@ICCV2017: For exploiting second-order statistics, we propose Matrix Power Normalized Covariance pooling (MPN-COV) ConvNets, different from and outperforming those using global average pooling.
CUDA C implementation of Principal Component Analysis (PCA) through Singular Value Decomposition (SVD) using a highly parallelisable version of the Jacobi eigenvalue algorithm.
CUDA code for Monte Carlo estimation of Pi (see https://www.geeksforgeeks.org/estimating-value-pi-using-monte-carlo/)
Parallel implementation of PCA on Nvidia CUDA
Parallel implementation of Cholesky Decomposition using CUDA APIs
CUDA GPU Cholesky Decomposition
Parallel programs using CUDA C++ for Nvidia GPUs supporting cuda.
CUDA GPU Cholesky Decomposition