forked from lucastabelini/PolyLaneNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
166 lines (132 loc) · 5.59 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import os
import sys
import random
import logging
import argparse
import subprocess
from time import time
import cv2
import numpy as np
import torch
from lib.config import Config
from utils.evaluator import Evaluator
def test(model, test_loader, evaluator, exp_root, cfg, view, epoch, max_batches=None, verbose=True):
if verbose:
logging.info("Starting testing.")
# Test the model
if epoch > 0:
model.load_state_dict(torch.load(os.path.join(exp_root, "models", "model_{:03d}.pt".format(epoch)))['model'])
model.eval()
criterion_parameters = cfg.get_loss_parameters()
test_parameters = cfg.get_test_parameters()
criterion = model.loss
loss = 0
total_iters = 0
test_t0 = time()
loss_dict = {}
with torch.no_grad():
for idx, (images, labels, img_idxs) in enumerate(test_loader):
if max_batches is not None and idx >= max_batches:
break
if idx % 1 == 0 and verbose:
logging.info("Testing iteration: {}/{}".format(idx + 1, len(test_loader)))
images = images.to(device)
labels = labels.to(device)
t0 = time()
outputs = model(images)
t = time() - t0
loss_i, loss_dict_i = criterion(outputs, labels, **criterion_parameters)
loss += loss_i.item()
total_iters += 1
for key in loss_dict_i:
if key not in loss_dict:
loss_dict[key] = 0
loss_dict[key] += loss_dict_i[key]
outputs = model.decode(outputs, labels, **test_parameters)
if evaluator is not None:
lane_outputs, _ = outputs
evaluator.add_prediction(img_idxs, lane_outputs.cpu().numpy(), t / images.shape[0])
if view:
outputs, extra_outputs = outputs
preds = test_loader.dataset.draw_annotation(
idx,
pred=outputs[0].cpu().numpy(),
cls_pred=extra_outputs[0].cpu().numpy() if extra_outputs is not None else None)
cv2.imshow('pred', preds)
cv2.waitKey(0)
if verbose:
logging.info("Testing time: {:.4f}".format(time() - test_t0))
out_line = []
for key in loss_dict:
loss_dict[key] /= total_iters
out_line.append('{}: {:.4f}'.format(key, loss_dict[key]))
if verbose:
logging.info(', '.join(out_line))
return evaluator, loss / total_iters
def parse_args():
parser = argparse.ArgumentParser(description="Lane regression")
parser.add_argument("--exp_name", default="default", help="Experiment name", required=True)
parser.add_argument("--cfg", default="config.yaml", help="Config file", required=True)
parser.add_argument("--epoch", type=int, default=None, help="Epoch to test the model on")
parser.add_argument("--batch_size", type=int, help="Number of images per batch")
parser.add_argument("--view", action="store_true", help="Show predictions")
return parser.parse_args()
def get_code_state():
state = "Git hash: {}".format(
subprocess.run(['git', 'rev-parse', 'HEAD'], stdout=subprocess.PIPE).stdout.decode('utf-8'))
state += '\n*************\nGit diff:\n*************\n'
state += subprocess.run(['git', 'diff'], stdout=subprocess.PIPE).stdout.decode('utf-8')
return state
def log_on_exception(exc_type, exc_value, exc_traceback):
logging.error("Uncaught exception", exc_info=(exc_type, exc_value, exc_traceback))
if __name__ == "__main__":
args = parse_args()
cfg = Config(args.cfg)
# Set up seeds
torch.manual_seed(cfg['seed'])
np.random.seed(cfg['seed'])
random.seed(cfg['seed'])
# Set up logging
exp_root = os.path.join(cfg['exps_dir'], os.path.basename(os.path.normpath(args.exp_name)))
logging.basicConfig(
format="[%(asctime)s] [%(levelname)s] %(message)s",
level=logging.INFO,
handlers=[
logging.FileHandler(os.path.join(exp_root, "test_log.txt")),
logging.StreamHandler(),
],
)
sys.excepthook = log_on_exception
logging.info("Experiment name: {}".format(args.exp_name))
logging.info("Config:\n" + str(cfg))
logging.info("Args:\n" + str(args))
# Device configuration
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Hyper parameters
num_epochs = cfg["epochs"]
batch_size = cfg["batch_size"] if args.batch_size is None else args.batch_size
# Model
model = cfg.get_model().to(device)
test_epoch = args.epoch
# Get data set
test_dataset = cfg.get_dataset("test")
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size if args.view is False else 1,
shuffle=False,
num_workers=8)
# Eval results
evaluator = Evaluator(test_loader.dataset, exp_root)
logging.basicConfig(
format="[%(asctime)s] [%(levelname)s] %(message)s",
level=logging.INFO,
handlers=[
logging.FileHandler(os.path.join(exp_root, "test_log.txt")),
logging.StreamHandler(),
],
)
logging.info('Code state:\n {}'.format(get_code_state()))
_, mean_loss = test(model, test_loader, evaluator, exp_root, cfg, epoch=test_epoch, view=args.view)
logging.info("Mean test loss: {:.4f}".format(mean_loss))
evaluator.exp_name = args.exp_name
eval_str, _ = evaluator.eval(label='{}_{}'.format(os.path.basename(args.exp_name), test_epoch))
logging.info(eval_str)