-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
113 lines (90 loc) · 3.63 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
CS224N 2022-23: Homework 4
utils.py: Utility Functions
Pencheng Yin <[email protected]>
Sahil Chopra <[email protected]>
Vera Lin <[email protected]>
Siyan Li <[email protected]>
Moussa KB Doumbouya <[email protected]>
"""
from typing import List
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import nltk
import sentencepiece as spm
nltk.download('punkt')
def pad_sents(sents, pad_token):
""" Pad list of sentences according to the longest sentence in the batch.
The paddings should be at the end of each sentence.
@param sents (list[list[str]]): list of sentences, where each sentence
is represented as a list of words
@param pad_token (str): padding token
@returns sents_padded (list[list[str]]): list of sentences where sentences shorter
than the max length sentence are padded out with the pad_token, such that
each sentences in the batch now has equal length.
"""
sents_padded = []
### YOUR CODE HERE (~6 Lines)
# Find the length of the longest sentence
max_len = max(len(s) for s in sents)
# Pad all sentences to the length of the longest sentence
for s in sents:
padded = s + [pad_token] * (max_len - len(s))
sents_padded.append(padded)
### END YOUR CODE
return sents_padded
def read_corpus(file_path, source, vocab_size=2500):
""" Read file, where each sentence is dilineated by a `\n`.
@param file_path (str): path to file containing corpus
@param source (str): "tgt" or "src" indicating whether text
is of the source language or target language
@param vocab_size (int): number of unique subwords in
vocabulary when reading and tokenizing
"""
data = []
sp = spm.SentencePieceProcessor()
sp.load('{}.model'.format(source))
with open(file_path, 'r', encoding='utf8') as f:
for line in f:
subword_tokens = sp.encode_as_pieces(line)
# only append <s> and </s> to the target sentence
if source == 'tgt':
subword_tokens = ['<s>'] + subword_tokens + ['</s>']
data.append(subword_tokens)
return data
def autograder_read_corpus(file_path, source):
""" Read file, where each sentence is dilineated by a `\n`.
@param file_path (str): path to file containing corpus
@param source (str): "tgt" or "src" indicating whether text
is of the source language or target language
"""
data = []
for line in open(file_path):
sent = nltk.word_tokenize(line)
# only append <s> and </s> to the target sentence
if source == 'tgt':
sent = ['<s>'] + sent + ['</s>']
data.append(sent)
return data
def batch_iter(data, batch_size, shuffle=False):
""" Yield batches of source and target sentences reverse sorted by length (largest to smallest).
@param data (list of (src_sent, tgt_sent)): list of tuples containing source and target sentence
@param batch_size (int): batch size
@param shuffle (boolean): whether to randomly shuffle the dataset
"""
batch_num = math.ceil(len(data) / batch_size)
index_array = list(range(len(data)))
if shuffle:
np.random.shuffle(index_array)
for i in range(batch_num):
indices = index_array[i * batch_size: (i + 1) * batch_size]
examples = [data[idx] for idx in indices]
examples = sorted(examples, key=lambda e: len(e[0]), reverse=True)
src_sents = [e[0] for e in examples]
tgt_sents = [e[1] for e in examples]
yield src_sents, tgt_sents