Skip to content

shubham-attri/binod2

Repository files navigation

Agent Workflow and Architecture

Core Components

1. Agent Controller

  • Purpose: Central orchestrator for all agent activities
  • Responsibilities:
    • Mode switching (Research/Case)
    • Context management
    • State synchronization
    • Message routing

2. Research Agent

  • Purpose: Handles legal research and document analysis
  • Capabilities:
    • Document search and analysis
    • Citation extraction
    • Legal precedent matching
    • Contract drafting assistance
    • Source verification

3. Case Agent

  • Purpose: Manages case-specific operations
  • Capabilities:
    • Case context tracking
    • Document organization
    • Timeline management
    • Client information handling
    • Case-specific contract drafting

4. Memory System

  • Short-term: Current conversation context
  • Long-term: Previous cases and research
  • Vector Store: Semantic search capabilities
  • Document Store: File management

Workflow Sequences

1. Research Mode Flow

sequenceDiagram
    User->>Agent Controller: Research Query
    Agent Controller->>Research Agent: Process Query
    Research Agent->>Vector Store: Search Documents
    Vector Store-->>Research Agent: Relevant Results
    Research Agent->>Memory System: Update Context
    Research Agent-->>Agent Controller: Formatted Response
    Agent Controller-->>User: Display Results
Loading

2. Case Mode Flow

sequenceDiagram
    User->>Agent Controller: Case Query
    Agent Controller->>Case Agent: Process Query
    Case Agent->>Memory System: Load Case Context
    Case Agent->>Vector Store: Search Case Documents
    Vector Store-->>Case Agent: Case-Specific Results
    Case Agent->>Memory System: Update Case State
    Case Agent-->>Agent Controller: Formatted Response
    Agent Controller-->>User: Display Results
Loading

State Management

1. Global State

  • Current mode (Research/Case)
  • User preferences
  • Authentication state
  • Active case/research context

2. Local State

  • Chat history
  • Document cache
  • UI state
  • Form data

3. Persistent State

  • Case records
  • Document metadata
  • User settings
  • Search history

Integration Points

1. External Services

  • VectorDB (Redis):

    • Document embeddings
    • Semantic search
    • Context storage
  • Backend (Supabase):

    • User management
    • Document storage
    • Case management
    • Activity logging

2. AI Models

  • Text Generation: Response creation
  • Document Analysis: Content extraction
  • Classification: Query routing
  • Embedding: Semantic search

Error Handling

1. Recovery Strategies

  • Automatic retry for transient failures
  • Graceful degradation
  • State rollback capabilities
  • User feedback mechanisms

2. Error Types

  • Network failures
  • Model errors
  • Rate limiting
  • Data validation

Performance Optimizations

1. Caching Strategy

  • Response caching
  • Document caching
  • Embedding caching
  • Context memoization

2. Load Management

  • Request batching
  • Lazy loading
  • Progressive enhancement
  • Resource pooling

Security Measures

1. Data Protection

  • End-to-end encryption
  • Secure storage
  • Access control
  • Audit logging

2. User Safety

  • Content filtering
  • Rate limiting
  • Input validation
  • Output sanitization

About

Second Iteration of buildilng Agent Binod

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published