-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path05_pascal_vgg_finetune.py
357 lines (303 loc) · 14.6 KB
/
05_pascal_vgg_finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
from __future__ import absolute_import, division, print_function
import argparse
import os
import shutil
from datetime import datetime
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import pdb
from tensorflow.contrib import eager as tfe
# from tensorflow.contrib.eager import Iterator
import util
CLASS_NAMES = ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car',
'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike',
'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor']
class SimpleCNN(keras.Model):
def __init__(self, num_classes=10):
super(SimpleCNN, self).__init__(name='VGG-16')
self.num_classes = num_classes
self.conv1= layers.Conv2D(64, (3, 3),
activation='relu',
padding='same',
name='block1_conv1')
self.conv2 = layers.Conv2D(64, (3, 3),
activation='relu',
padding='same',
name='block1_conv2')
self.pool1 = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')
# Block 2
self.conv3= layers.Conv2D(128, (3, 3),
activation='relu',
padding='same',
name='block2_conv1')
self.conv4 = layers.Conv2D(128, (3, 3),
activation='relu',
padding='same',
name='block2_conv2')
self.pool2= layers.MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')
# Block 3
self.conv5 = layers.Conv2D(256, (3, 3),
activation='relu',
padding='same',
name='block3_conv1')
self.conv6 = layers.Conv2D(256, (3, 3),
activation='relu',
padding='same',
name='block3_conv2')
self.conv7 = layers.Conv2D(256, (3, 3),
activation='relu',
padding='same',
name='block3_conv3')
self.pool3 = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')
# Block 4
self.conv8 = layers.Conv2D(512, (3, 3),
activation='relu',
padding='same',
name='block4_conv1')
self.conv9= layers.Conv2D(512, (3, 3),
activation='relu',
padding='same',
name='block4_conv2')
self.conv10= layers.Conv2D(512, (3, 3),
activation='relu',
padding='same',
name='block4_conv3')
self.pool4 = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')
# Block 5
self.conv11 = layers.Conv2D(512, (3, 3),
activation='relu',
padding='same',
name='block5_conv1')
self.conv12 = layers.Conv2D(512, (3, 3),
activation='relu',
padding='same',
name='block5_conv2')
self.conv13 = layers.Conv2D(512, (3, 3),
activation='relu',
padding='same',
name='block5_conv3')
self.pool5 = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')
self.flat = layers.Flatten()
self.dense1 = layers.Dense(4096, activation='relu', name='fc1')
self.dropout = layers.Dropout(rate=0.5)
self.dense2 = layers.Dense(4096, activation='relu', name='fc2')
self.dropout2 = layers.Dropout(rate=0.5)
self.dense3 = layers.Dense(num_classes)
def call(self, inputs, training=False):
x = self.conv1(inputs)
x = self.conv2(x)
x = self.pool1(x)
x = self.conv3(x)
x = self.conv4(x)
x = self.pool2(x)
x = self.conv5(x)
x = self.conv6(x)
x = self.conv7(x)
x = self.pool3(x)
x = self.conv8(x)
x = self.conv9(x)
x = self.conv10(x)
x = self.pool4(x)
x = self.conv11(x)
x = self.conv12(x)
x = self.conv13(x)
x = self.pool5(x)
flat_x = self.flat(x)
out = self.dense1(flat_x)
out = self.dropout(out, training=training)
out = self.dense2(out)
out = self.dropout2(out, training=training)
out = self.dense3(out)
return out
def compute_output_shape(self, input_shape):
shape = tf.TensorShape(input_shape).as_list()
shape = [shape[0], self.num_classes]
return tf.TensorShape(shape)
def flip(img, lbl,wts):
image = tf.image.flip_left_right(img)
return image, lbl,wts
def crop (img,lbl,wts):
image = tf.image.random_crop(img,[224,224,3])
return image,lbl,wts
def center_crop (img,lbl,wts):
# image = tf.image.central_crop(img,[224,224,3])
image = tf.image.resize_image_with_crop_or_pad(
img,
224,
224)
return image, lbl, wts
def test(model, dataset):
test_loss = tfe.metrics.Mean()
test_accuracy = tfe.metrics.Accuracy()
for batch, (images, labels) in enumerate(dataset):
logits = model(images)
loss_value = tf.losses.sparse_softmax_cross_entropy(labels, logits)
prediction = tf.argmax(logits, axis=1, output_type=tf.int32)
test_accuracy(prediction, labels)
test_loss(loss_value)
return test_loss.result(), test_accuracy.result()
def main():
parser = argparse.ArgumentParser(description='TensorFlow Pascal Example')
parser.add_argument('--batch-size', type=int, default=20,
help='input batch size for training')
parser.add_argument('--epochs', type=int, default=60,
help='number of epochs to train')
parser.add_argument('--lr', type=float, default=0.001,
help='learning rate')
parser.add_argument('--seed', type=int, default=1,
help='random seed')
parser.add_argument('--log-interval', type=int, default=50,
help='how many batches to wait before'
' logging training status')
parser.add_argument('--eval-interval', type=int, default=250,
help='how many batches to wait before'
' evaluate the model')
parser.add_argument('--log-dir', type=str, default='04_vgg_pretrained_tb',
help='path for logging directory')
parser.add_argument('--data-dir', type=str, default='./VOCdevkit/VOC2007',
help='Path to PASCAL data storage')
args = parser.parse_args()
util.set_random_seed(args.seed)
sess = util.set_session()
splt = "trainval"
trainval_npz = splt + '.npz'
test_npz = 'test.npz'
if (os.path.isfile(trainval_npz)):
print("\nFound trainval npz file\n")
with np.load(trainval_npz) as tr_npzfile:
train_images = tr_npzfile['imgs']
train_labels = tr_npzfile['labels']
train_weights = tr_npzfile['weights']
else:
train_images, train_labels, train_weights = util.load_pascal(args.data_dir,
class_names=CLASS_NAMES,
split=splt)
np.savez(trainval_npz,imgs = train_images,labels = train_labels,weights = train_weights)
##TEST##
if (os.path.isfile(test_npz)):
print("\nFound test npz file\n")
# npzfile = np.load(test_npz)
with np.load(test_npz) as test_npzfile:
test_images = test_npzfile['imgs']
test_labels = test_npzfile['labels']
test_weights = test_npzfile['weights']
else:
test_images, test_labels, test_weights = util.load_pascal(args.data_dir,
class_names=CLASS_NAMES,
split='test')
np.savez(test_npz, imgs=test_images, labels=test_labels, weights=test_weights)
## TODO modify the following code to apply data augmentation here
rgb_mean = np.array([123.68, 116.78, 103.94],dtype=np.float32) / 256.0
train_images = (train_images - rgb_mean).astype(np.float32)
test_images = (test_images - rgb_mean).astype(np.float32)
flip_fn = lambda img,lbl,wts: flip(img, lbl,wts)
crop_fn = lambda img,lbl,wts: crop(img, lbl,wts)
ccrop_fn = lambda img,lbl,wts : center_crop(img,lbl,wts)
train_dataset = tf.data.Dataset.from_tensor_slices((train_images, train_labels, train_weights))
flipped_train = train_dataset.map(flip_fn,num_parallel_calls=4)
train_dataset = train_dataset.concatenate(flipped_train)
train_dataset = train_dataset.map(crop_fn,num_parallel_calls=4)
train_dataset = train_dataset.shuffle(10000).batch(args.batch_size)
test_dataset = tf.data.Dataset.from_tensor_slices((test_images, test_labels, test_weights))
test_dataset = test_dataset.map(ccrop_fn,num_parallel_calls=4)
test_dataset = test_dataset.batch(args.batch_size)
model = SimpleCNN(num_classes=len(CLASS_NAMES))
logdir = os.path.join(args.log_dir,
datetime.now().strftime('%Y-%m-%d_%H-%M-%S'))
if os.path.exists(logdir):
shutil.rmtree(logdir)
os.makedirs(logdir)
writer = tf.contrib.summary.create_file_writer(logdir)
writer.set_as_default()
tf.contrib.summary.initialize()
global_step = tf.train.get_or_create_global_step()
# optimizer = tf.train.AdamOptimizer(learning_rate=args.lr)
##decay lr using callback
learning_rate=tf.Variable(args.lr)
decay_interval = 5000
# decay_op = tf.train.exponential_decay(args.lr,global_step,decay_interval,0.5)
##optimizer : sgd , momentum, 0.9
optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=0.9)
train_log = {'iter': [], 'loss': []}
test_log = {'iter': [], 'mAP': []}
checkpoint_directory = "./05_vgg_pretrained/"
if not os.path.exists(checkpoint_directory):
os.makedirs(checkpoint_directory)
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
checkpoint = tf.train.Checkpoint(optimizer=optimizer, model=model)
# pdb.set_trace()
latest = tf.train.latest_checkpoint(checkpoint_directory)
load_flag = 0
if (latest is not None):
print("Loading checkpoint ",latest)
status = checkpoint.restore(tf.train.latest_checkpoint(checkpoint_directory))
load_flag =1
weight_load_flag = 0
print("\nUsing eval interval: ",args.eval_interval)
print("\nUsing batch size: ",args.batch_size)
for ep in range(args.epochs):
epoch_loss_avg = tfe.metrics.Mean()
# for batch, (images, labels,weights) in enumerate(train_dataset):
for (images, labels,weights) in tfe.Iterator(train_dataset):
# pdb.set_trace()
# loss_value, grads = util.cal_grad(model,
# loss_func=tf.losses.sigmoid_cross_entropy,
# inputs=images,
# targets=labels,
# weights=weights)
if(weight_load_flag==0):
logits = model(images, training=True)
model.load_weights('vgg16_weights_tf_dim_ordering_tf_kernels.h5',by_name=True )
weight_load_flag =1
with tf.GradientTape() as tape:
logits = model(images,training=True)
loss_value = tf.losses.sigmoid_cross_entropy(labels, logits, weights)
grads = tape.gradient(loss_value, model.trainable_variables)
# print("Loss and gradient calculation, done \n")
# pdb.set_trace()
optimizer.apply_gradients(zip(grads,
model.trainable_variables),
global_step)
epoch_loss_avg(loss_value)
if global_step.numpy() % args.log_interval == 0:
# pdb.set_trace()
print('Epoch: {0:d}/{1:d} Iteration:{2:d} Training Loss:{3:.4f} '.format(ep,
args.epochs,
global_step.numpy(),
epoch_loss_avg.result()))
train_log['iter'].append(global_step.numpy())
train_log['loss'].append(epoch_loss_avg.result())
with tf.contrib.summary.always_record_summaries():
tf.contrib.summary.scalar('Training loss', loss_value)
tf.contrib.summary.image('Training images', images)
tf.contrib.summary.scalar('Learning rate', learning_rate)
for i, variable in enumerate(model.trainable_variables):
tf.contrib.summary.histogram("grad_" + variable.name, grads[i])
if global_step.numpy() % args.eval_interval == 0:
print("\n **** Running Eval *****\n")
test_AP, test_mAP = util.eval_dataset_map(model, test_dataset)
print("Eval finsished with test mAP : ",test_mAP)
test_log['iter'].append(global_step.numpy())
test_log['mAP'].append(test_mAP)
with tf.contrib.summary.always_record_summaries():
tf.contrib.summary.scalar('Testing mAP', test_mAP)
learning_rate.assign(tf.train.exponential_decay(args.lr, global_step, decay_interval, 0.5)())
print("Learning rate:", learning_rate)
checkpoint.save(checkpoint_prefix)
## TODO write the training and testing code for multi-label classification
AP, mAP = util.eval_dataset_map(model, test_dataset)
rand_AP = util.compute_ap(
test_labels, np.random.random(test_labels.shape),
test_weights, average=None)
print('Random AP: {} mAP'.format(np.mean(rand_AP)))
gt_AP = util.compute_ap(test_labels, test_labels, test_weights, average=None)
print('GT AP: {} mAP'.format(np.mean(gt_AP)))
print('Obtained {} mAP'.format(mAP))
print('Per class:')
for cid, cname in enumerate(CLASS_NAMES):
print('{}: {}'.format(cname, util.get_el(AP, cid)))
if __name__ == '__main__':
tf.enable_eager_execution()
main()