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Chapter 4

Subgradient Descent
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Subgradients

What if f is not differentiable?

Definition

g ∈ Rd is a subgradient of f at x if

f(y) ≥ f(x) + g>(y − x) for all y ∈ dom(f)

Subgradient of a function

g is a subgradient of f (not necessarily convex) at x if

f(y) ≥ f(x) + gT (y − x) for all y

(⇐⇒ (g,−1) supports epi f at (x, f(x)))

PSfrag replacements

x1 x2

f(x1) + gT
1 (x − x1)

f(x2) + gT
2 (x − x2)

f(x2) + gT
3 (x − x2)

f(x)

g2, g3 are subgradients at x2; g1 is a subgradient at x1

Prof. S. Boyd, EE392o, Stanford University 2

And: ∂f(x) ⊆ Rd is the set of subgradients of f at x.
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What are subgradients good for?

Convexity

Lemma (Exercise 23)

A function f : dom(f)→ R is convex if and only if dom(f) is
convex and ∂f(x) 6= ∅ for all x ∈ dom(f).

Lipschitz Continuity

Lemma (Exercise 24)

Let f : Rd → R be convex, B ∈ R+. Then the following two
statements are equivalent.

(i) ‖g‖ ≤ B for all x ∈ Rd and all g ∈ ∂f(x).
(ii) |f(x)− f(y)| ≤ B‖x− y‖ for all x,y ∈ Rd.
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What are subgradients good for?

Subgradient Optimality Condition. Subgradients also allow us
to describe cases of optimality for functions which are not
necessarily differentiable (and not necessarily convex)

Lemma

Suppose that f is any function over dom(f), and x ∈ dom(f). If
0 ∈ ∂f(x), then x is a global minimum.

Proof.
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The subgradient descent algorithm

An iteration of subgradient descent is defined as

Let gt ∈ ∂f(xt)

xt+1 := xt − γgt.
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Bounded subgradients: O(1/ε2) steps
The following result gives the convergence for Subgradient
Descent. It is identical to Theorem 2.1, up to relaxing the
requirement of differentiability.

Theorem

Let f : Rd → R be convex and B-Lipschitz continuous on Rd with
a global minimum x?; furthermore, suppose that ‖x0 − x?‖ ≤ R.
Choosing the constant stepsize

γ :=
R

B
√
T
,

subgradient descent yields

1

T

T−1∑
t=0

f(xt)− f(x?) ≤ RB√
T
.
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Bounded subgradients: O(1/ε2) steps

Proof.
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Optimality of first-order methods

With all the convergence rates we have seen so far, a very natural
question to ask is if these rates are best possible or not.
Surprisingly, the rate can indeed not be improved in general.

Theorem (Nesterov)

For any T ≤ d− 1 and starting point x0, there is a function f in
the problem class of B-Lipschitz functions over Rd, such that any
(sub)gradient method has an objective error at least

f(xT )− f(x?) ≥ RB

2(1 +
√
T + 1)

.
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Chapter 5

Stochastic Gradient Descent
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Sum structured objective functions

Consider sum structured objective functions:

f(x) :=
1

n

n∑
i=1

fi(x).

Here fi is typically the cost function of the i-th datapoint, taken
from a training set of n elements in total.
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The SGD algorithm

An iteration of stochastic gradient descent (SGD) is defined as

sample i ∈ [n] uniformly at random

xt+1 := xt − γt∇fi(xt).

The vector gt := ∇fi(xt) is called a stochastic gradient.
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Unbiasedness of a stochastic gradient

Why uniform sampling?
In expectation over the random choice of i, gt does coincide with
the full gradient of f :

E
[
gt
∣∣xt

]
= ∇f(xt).

I gt is an unbiased stochastic gradient.

Why SGD?
n times cheaper!
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Stochastic vanilla analysis

Idea: follow the vanilla analysis with ∇f(xt) replaced by gt...

f(xt)− f(x?)
NO!!!
≤ g>t (xt − x?).

but

g>t (xt − x?) =
1

γ
(xt − xt+1)

>(xt − x?).

=
1

2γ

(
‖xt − xt+1‖2 + ‖xt − x?‖2 − ‖xt+1 − x?‖2

)
=

1

2γ

(
γ2‖gt‖2 + ‖xt − x?‖2 − ‖xt+1 − x?‖2

)
,

using the definition SGD again. Finally, the telescoping sum:

T−1∑
t=0

(
g>t (xt − x?)

)
≤ γ

2

T−1∑
t=0

‖gt‖2 +
1

2γ
‖x0 − x?‖2.
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Bounded stochastic gradients: O(1/ε2) steps

Classic GD: For vanilla analysis, we assumed that
‖∇f(x)‖2 ≤ B2

GD for all x ∈ Rd, where BGD was a constant. So
for sum-objective:∥∥∥ 1

n

∑
i

∇fi(x)
∥∥∥2 ≤ B2

GD ∀x

SGD: Assuming same for the expected squared norms of our
stochastic gradients, now called B2

SGD.

1

n

∑
i

∥∥∇fi(x)∥∥2 ≤ B2
SGD ∀x

I get same convergence result, now for expected objective f ...
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Bounded stochastic gradients: O(1/ε2) steps

Theorem

Let f : Rd → R be convex and differentiable, x? a global
minimum; furthermore, suppose that ‖x0 − x?‖ ≤ R, and that
E
[
‖gt‖2

]
≤ B2 for all t. Choosing the constant stepsize

γ :=
R

B
√
T

stochastic gradient descent yields

1

T

T−1∑
t=0

E
[
f(xt)

]
− f(x?) ≤ RB√

T
.
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Bounded stochastic gradients: O(1/ε2) steps

Proof. Using convexity and unbiasedness of gt, we compute

E
[
f(xt)

]
− f(x?) = E

[
f(xt)− f(x?)

]
≤ E

[
∇f(xt)

>(xt − x?)
]

= E
[
E
[
gt
∣∣xt

]>
(xt − x?)

]
= E

[
E
[
g>t (xt − x?)

∣∣xt

]]
= E

[
g>t (xt − x?)

]
,

where the second-to-last step uses linearity of (conditional)
expectations, while the last step is known as the tower rule; see
Exercise 25.
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Bounded stochastic gradients: O(1/ε2) steps

Now we can again use linearity of expectation and then ( ). We get

1

T

T−1∑
t=0

E
[
f(xt)

]
− f(x?) ≤ 1

T
E
[ T−1∑
t=0

g>t (xt − x?)
]

=
1

T
E
[γ
2

T−1∑
t=0

‖gt‖2 +
1

2γ
‖x0 − x?‖2

]
=

1

T

(
γ

2

T−1∑
t=0

E
[
‖gt‖2

]
+

1

2γ
‖x0 − x?‖2

)

≤ RB√
T
,

after plugging in our value of γ and the assumption on E
[
‖gt‖2

]
and ‖x0 − x?‖.
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Stochastic Subgradient Descent

For problems which are not necessarily differentiable, we modify
SGD to use a subgradient of fi in each iteration. The update of
stochastic subgradient descent is given by

sample i ∈ [n] uniformly at random

let gt ∈ ∂fi(xt)

xt+1 := xt − γtgt.

In other words, we are using an unbiased estimate of a subgradient
at each step, E

[
gt
∣∣xt

]
∈ ∂f(xt).

Convergence in O(1/ε2), by using the subgradient property at the
beginning of the proof, where convexity was applied.
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Constrained optimization

For constrained optimization, our theorem for the SGD
convergence in O(1/ε2) steps directly extends to constrained
problems as well.

After every step of SGD, projection back to X is applied as usual.
The resulting algorithm is called projected SGD.
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Strong convexity: O(1/ε) steps

Strengthen the above SGD analysis? Additional assumption of
strong convexity of the objective f . No constant stepsize γ, but
instead use time-varying stepsize γt decreasing over the time t.

Theorem

Let f : Rd → R be differentiable and strongly convex with
parameter µ > 0; let x? be the unique global minimum of f , and
E
[
‖gt‖2

]
≤ B2 for all x. Choosing the decreasing stepsize

γt :=
2

µ(t+ 1)
SGD yields

E
[
f

(
2

T (T + 1)

T∑
t=1

t · xt

)
− f(x?)

]
≤ 2B2

µ(T + 1)
.
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Strong convexity: O(1/ε) steps

Proof.

EPFL Machine Learning and Optimization Laboratory 22/22


