forked from pihmadmin/PIHM_v2.0
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathf.c
774 lines (766 loc) · 47.8 KB
/
f.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
/*******************************************************************************
*-----------------------------------------------------------------------------*
* File : f.c (PIHM v.2.0) *
* Function : Model Kernel: Building ODE system for each physical process *
*-----------------------------------------------------------------------------*
* *
*-----------------------------------------------------------------------------*
* Developer of PIHM v.2.0: Mukesh Kumar ([email protected]) *
* Developer of PIHM v.1.0: Yizhong Qu ([email protected]) *
*-----------------------------------------------------------------------------*
* *
*-----------------------------------------------------------------------------*
* NOTE: f.c has gone a massive revamp (essentially rewritten) since PIHM v.1.0*
* *
*...........MODFICATIONS/ADDITIONS incorporated in f.c (PIHM v.2.0)...........*
* a) Surface Flow: *
* --> Correction of diffusion wave approximation (calculation of dh/ds) *
* i. Calculation of dh/ds performed using planar slope connecting*
* neighboring centroids *
* ii.Reflection of elements at boundaries and rivers for dh/ds *
* calculation
* --> Correction of kinematic wave approximation (dh/ds calculation based*
* on elevation only instead of head *
* --> Correction of gradient for cases with steep change in topography *
* b) Subsurface Flow: *
* --> Addition of macropore phenomena *
* --> Addition of rectangular cell beneath a river element *
* --> Implementation of two layered subsurface model(sat/unsat) based on *
* Richard's eqn *
* --> Incorporation of Vertical and Horizontal Anisotropy *
* --> Use of geologic data *
* c) River Flow: *
* --> Correction of kinematic and diff. wave approximation of SV eqn *
* --> Incorporation of flexible river shapes *
* --> Separate incorporation of leakage and lateral flow *
* --> Correction of bank overland flow for extreme cases *
* --> Addition of aquifer cells below river elements *
* c) Surface/Subsurface Coupling: *
* --> Implementation of First order coupling through (in/ex)filtration *
* based on head continuity *
* d) Evaporation: *
* --> Incorporation of ET from ground/subsurface/vegetation *
* --> Incorporation of landcover properties for calculation of each ET *
* component *
* e) Computational: *
* --> Use of temporary state variables in calculation. Note: Never change*
* core state variables *
* f) Miscellaneous (other advantages realtive to PIHM1.0): No maximum *
* constraint on gw level. Accordingly, no numerical constraints on subsur- *
* face flux terms.Faster Implementation. Led to first large scale model *
* application.
*-----------------------------------------------------------------------------*
* *
*-----------------------------------------------------------------------------*
* For questions or comments, please contact *
* --> Mukesh Kumar ([email protected]) *
* --> Prof. Chris Duffy ([email protected]) *
* This code is free for research purpose only. *
* Please provide relevant references if you use this code in your research work*
*-----------------------------------------------------------------------------*
* *
* REFERENCES: *
* PIHM2.0: *
* a) Kumar, M., 2008, "Development and Implementation of a Multiscale, *
* Multiprocess Hydrologic Model". PhD Thesis, Penn State University *
* b) Kumar, M, G.Bhatt & C.Duffy, "Coupling of Data and Processes in *
* a Mesoscale Watershed", Advances in Water Resources (submitted) *
* PIHM1.0: *
* a) Qu, Y., 2005, "An Integrated hydrologic model for multiproces *
* simulation using semi-discrete finite volume approach".PhD Thesis, PSU *
* b) Qu, Y. & C. Duffy, 2007, "A semidiscrete finite volume formulation *
* for multiprocess watershed simulation". Water Resources Research *
*******************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include "nvector_serial.h"
#include "sundialstypes.h"
#include "pihm.h"
#define multF 2
#define MINpsi -70
#define EPS 0.05
#define THRESH 0.0
#define UNIT_C 1440 /* Note 60*24 for calculation of yDot in m/min units while forcing is in m/day. */
#define GRAV 9.8*60*60 /* Note the dependence on physical units */
realtype Interpolation(TSD *Data, realtype t);
realtype returnVal(realtype rArea, realtype rPerem, realtype eqWid,realtype ap_Bool)
{
if(ap_Bool==1)
{
return rArea;
}
else if(ap_Bool==2)
{
return rPerem;
}
else
{
return eqWid;
}
}
realtype CS_AreaOrPerem(int rivOrder, realtype rivDepth, realtype rivCoeff, realtype a_pBool)
{
realtype rivArea, rivPerem, eq_Wid;
switch(rivOrder)
{
case 1:
rivArea = rivDepth*rivCoeff;
rivPerem= 2.0*rivDepth+rivCoeff;
eq_Wid=rivCoeff;
return returnVal(rivArea, rivPerem, eq_Wid, a_pBool);
case 2:
rivArea = pow(rivDepth,2)/rivCoeff;
rivPerem = 2.0*rivDepth*pow(1+pow(rivCoeff,2),0.5)/rivCoeff;
eq_Wid=2.0*pow(rivDepth+EPS,1/(rivOrder-1))/pow(rivCoeff,1/(rivOrder-1));
return returnVal(rivArea, rivPerem, eq_Wid, a_pBool);
case 3:
rivArea = 4*pow(rivDepth,1.5)/(3*pow(rivCoeff,0.5));
rivPerem =(pow(rivDepth*(1+4*rivCoeff*rivDepth)/rivCoeff,0.5))+(log(2*pow(rivCoeff*rivDepth,0.5)+pow(1+4*rivCoeff*rivDepth,0.5))/(2*rivCoeff));
eq_Wid=2.0*pow(rivDepth+EPS,1/(rivOrder-1))/pow(rivCoeff,1/(rivOrder-1));
return returnVal(rivArea, rivPerem, eq_Wid, a_pBool);
case 4:
rivArea = 3*pow(rivDepth,4.0/3.0)/(2*pow(rivCoeff,1.0/3.0));
rivPerem = 2*((pow(rivDepth*(1+9*pow(rivCoeff,2.0/3.0)*rivDepth),0.5)/3)+(log(3*pow(rivCoeff,1.0/3.0)*pow(rivDepth,0.5)+pow(1+9*pow(rivCoeff,2.0/3.0)*rivDepth,0.5))/(9*pow(rivCoeff,1.0/3.0))));
eq_Wid=2.0*pow(rivDepth+EPS,1/(rivOrder-1))/pow(rivCoeff,1/(rivOrder-1));
return returnVal(rivArea, rivPerem, eq_Wid, a_pBool);
default:
printf("\n Relevant Values entered are wrong");
printf("\n Depth: %lf\tCoeff: %lf\tOrder: %d\t");
return 0;
}
}
OverlandFlow(realtype **flux, int loci, int locj, realtype avg_y, realtype grad_y, realtype avg_sf, realtype crossA, realtype avg_rough)
{
flux[loci][locj] = crossA*pow(avg_y, 2.0/3.0)*grad_y/(sqrt(fabs(avg_sf))*avg_rough);
// flux[loci][locj] = (grad_y>0?1:-1)*crossA*pow(avg_y, 2.0/3.0)*sqrt(fabs(grad_y))/(avg_rough);
}
OLFeleToriv(realtype eleYtot,realtype EleZ,realtype cwr,realtype rivZmax,realtype rivYtot,realtype **fluxriv,int loci,int locj,realtype length)
{
realtype threshEle;
if(rivZmax < EleZ)
{
threshEle = EleZ;
}
else
{
threshEle = rivZmax;
}
if (rivYtot > eleYtot)
{
if (eleYtot > threshEle)
{
fluxriv[loci][locj] = cwr*2.0*sqrt(2*GRAV*UNIT_C*UNIT_C)*length*sqrt(rivYtot-eleYtot)*(rivYtot-threshEle)/3.0;
}
else
{
if(threshEle<rivYtot)
{
fluxriv[loci][locj] = cwr*2.0*sqrt(2*GRAV*UNIT_C*UNIT_C)*length*sqrt(rivYtot-threshEle)*(rivYtot-threshEle)/3.0;
}
else
{
fluxriv[loci][locj]=0.0;
}
}
}
else
{
if (rivYtot > threshEle)
{
fluxriv[loci][locj] = -cwr*2.0*sqrt(2*GRAV*UNIT_C*UNIT_C)*length*sqrt(eleYtot - rivYtot)*(eleYtot - threshEle)/3.0;
}
else
{
if(threshEle<eleYtot)
{
fluxriv[loci][locj] = -cwr*2.0*sqrt(2*GRAV*UNIT_C*UNIT_C)*length*sqrt(eleYtot - threshEle)*(eleYtot - threshEle)/3.0;
}
else
{
fluxriv[loci][locj]=0.0;
}
}
}
}
/*
realtype avgY(realtype zi,realtype zinabr,realtype yi,realtype yinabr)
{
if(zinabr>zi)
{
if(zinabr>zi+yi)
{
return yinabr/2;
}
else
{
return (yi+zi-zinabr+yinabr)/2;
}
}
else
{
if(zi>zinabr+yinabr)
{
return yi/2;
}
else
{
return (yi+yinabr+zinabr-zi)/2;
}
}
}
*/
/* Note: above formulation doesnt' satisfies upwind/downwind scheme.*/
realtype avgY(realtype diff, realtype yi, realtype yinabr)
{
if(diff>0)
{
if(yi>1*EPS/100)
{
// return 0.5*(yi+yinabr);
// return ((yinabr>yi)?0:1.0*yi); /* Note the if-else TRUE case can be possible only for Kinematic case */
return 1.0*yi;
}
else
{
return 0;
}
}
else
{
if(yinabr>1*EPS/100)
{
// return 0.5*(yi+yinabr);
// return ((yi>yinabr)?0:1.0*yinabr); /* Note the if-else TRUE case can be possible only for Kinematic case */
return 1.0*yinabr;
}
else
{
return 0;
}
}
}
realtype effKV(realtype ksatFunc,realtype gradY,realtype macKV,realtype KV,realtype areaF)
{
if(ksatFunc>=0.98)
{
return (macKV*areaF+KV*(1-areaF)*ksatFunc);
}
else
{
if(fabs(gradY)*ksatFunc*KV<=1*KV*ksatFunc)
{
return KV*ksatFunc;
}
else
{
if(fabs(gradY)*ksatFunc*KV<(macKV*areaF+KV*(1-areaF)*ksatFunc))
{
return (macKV*areaF*ksatFunc+KV*(1-areaF)*ksatFunc);
}
else
{
return (macKV*areaF+KV*(1-areaF)*ksatFunc);
}
}
}
}
realtype effKH(int mp,realtype tmpY, realtype aqDepth, realtype MacD, realtype MacKsatH, realtype areaF, realtype ksatH)
{
if(mp==1)
{
if(tmpY>aqDepth-MacD)
{
if(tmpY>aqDepth)
{
return (MacKsatH*MacD*areaF+ksatH*(aqDepth-MacD*areaF))/aqDepth;
}
else
{
return (MacKsatH*(tmpY-(aqDepth-MacD))*areaF+ksatH*(aqDepth-MacD+(tmpY-(aqDepth-MacD))*(1-areaF)))/tmpY;
}
}
else
{
return ksatH;
}
}
else
{
return ksatH;
}
}
void f(realtype t, N_Vector CV_Y, N_Vector CV_Ydot, void *DS)
{
int i, j,inabr;
realtype Delta, Gamma;
realtype Rn, T, Vel, RH, VP,P,LAI,zero_dh,cnpy_h,rl,r_a,r_s,alpha_r,f_r,eta_s,beta_s,Rmax;
realtype Avg_Y_Surf, Dif_Y_Surf,Grad_Y_Surf, Avg_Sf,Distance;
realtype Cwr,TotalY_Riv, TotalY_Riv_down,CrossA,CrossAdown,AvgCrossA,Perem, Perem_down,Avg_Rough,Avg_Perem,Avg_Y_Riv,Dif_Y_Riv,Grad_Y_Riv,Wid,Wid_down,Avg_Wid;
realtype Avg_Y_Sub, Dif_Y_Sub,Avg_Ksat, Grad_Y_Sub,nabrAqDepth,AquiferDepth, Deficit,elemSatn,satKfunc,effK,effKnabr,TotalY_Ele,TotalY_Ele_down;
realtype *Y, *DY;
Model_Data MD;
Y = NV_DATA_S(CV_Y);
DY = NV_DATA_S(CV_Ydot);
MD = (Model_Data) DS;
/* Initialization of temporary state variables */
for(i=0; i<3*MD->NumEle+2*MD->NumRiv; i++)
{
MD->DummyY[i]=(Y[i]>=0)?Y[i]:0;
DY[i]=0;
if(i<MD->NumRiv)
{
MD->FluxRiv[i][0]=0;
MD->FluxRiv[i][10]=0;
}
if((MD->SurfMode==2)&&(i<MD->NumEle))
{
for(j=0;j<3;j++)
{
MD->Ele[i].surfH[j]=(MD->Ele[i].nabr[j]>0)?((MD->Ele[i].BC[j]>-4)?(MD->Ele[MD->Ele[i].nabr[j]-1].zmax+MD->DummyY[MD->Ele[i].nabr[j]-1]):((MD->DummyY[-(MD->Ele[i].BC[j]/4)-1+3*MD->NumEle]>MD->Riv[-(MD->Ele[i].BC[j]/4)-1].depth)?MD->Riv[-(MD->Ele[i].BC[j]/4)-1].zmin+MD->DummyY[-(MD->Ele[i].BC[j]/4)-1+3*MD->NumEle]:MD->Riv[-(MD->Ele[i].BC[j]/4)-1].zmax)):((MD->Ele[i].BC[j]!=1)?(MD->Ele[i].zmax+MD->DummyY[i]):Interpolation(&MD->TSD_EleBC[(MD->Ele[i].BC[j])-1], t));
}
MD->Ele[i].dhBYdx=-1*(MD->Ele[i].surfY[2]*(MD->Ele[i].surfH[1]-MD->Ele[i].surfH[0])+MD->Ele[i].surfY[1]*(MD->Ele[i].surfH[0]-MD->Ele[i].surfH[2])+MD->Ele[i].surfY[0]*(MD->Ele[i].surfH[2]-MD->Ele[i].surfH[1]))/(MD->Ele[i].surfX[2]*(MD->Ele[i].surfY[1]-MD->Ele[i].surfY[0])+MD->Ele[i].surfX[1]*(MD->Ele[i].surfY[0]-MD->Ele[i].surfY[2])+MD->Ele[i].surfX[0]*(MD->Ele[i].surfY[2]-MD->Ele[i].surfY[1]));
MD->Ele[i].dhBYdy=-1*(MD->Ele[i].surfX[2]*(MD->Ele[i].surfH[1]-MD->Ele[i].surfH[0])+MD->Ele[i].surfX[1]*(MD->Ele[i].surfH[0]-MD->Ele[i].surfH[2])+MD->Ele[i].surfX[0]*(MD->Ele[i].surfH[2]-MD->Ele[i].surfH[1]))/(MD->Ele[i].surfY[2]*(MD->Ele[i].surfX[1]-MD->Ele[i].surfX[0])+MD->Ele[i].surfY[1]*(MD->Ele[i].surfX[0]-MD->Ele[i].surfX[2])+MD->Ele[i].surfY[0]*(MD->Ele[i].surfX[2]-MD->Ele[i].surfX[1]));
}
}
/* Lateral Flux Calculation between Triangular elements Follows */
for(i=0; i<MD->NumEle; i++)
{
AquiferDepth=(MD->Ele[i].zmax-MD->Ele[i].zmin);
for(j=0; j<3; j++)
{
if(MD->Ele[i].nabr[j] > 0)
{
/***************************************************************************/
/* Subsurface Lateral Flux Calculation between Triangular elements Follows */
/***************************************************************************/
Dif_Y_Sub = (MD->DummyY[i+2*MD->NumEle] + MD->Ele[i].zmin) - (MD->DummyY[MD->Ele[i].nabr[j]-1 + 2*MD->NumEle] + MD->Ele[MD->Ele[i].nabr[j]-1].zmin);
// Avg_Y_Sub=avgY(MD->Ele[i].zmin,MD->Ele[MD->Ele[i].nabr[j]-1].zmin,MD->DummyY[i+2*MD->NumEle],MD->DummyY[MD->Ele[i].nabr[j]-1 + 2*MD->NumEle]);
Avg_Y_Sub=avgY(Dif_Y_Sub,MD->DummyY[i+2*MD->NumEle],MD->DummyY[MD->Ele[i].nabr[j]-1 + 2*MD->NumEle]);
Distance = sqrt(pow((MD->Ele[i].x - MD->Ele[MD->Ele[i].nabr[j] - 1].x), 2) + pow((MD->Ele[i].y - MD->Ele[MD->Ele[i].nabr[j] - 1].y), 2));
Grad_Y_Sub = Dif_Y_Sub/Distance;
/* take care of macropore effect */
effK=effKH(MD->Ele[i].Macropore,MD->DummyY[i+2*MD->NumEle],AquiferDepth,MD->Ele[i].macD,MD->Ele[i].macKsatH,MD->Ele[i].vAreaF,MD->Ele[i].KsatH);
inabr=MD->Ele[i].nabr[j]-1;
nabrAqDepth=(MD->Ele[inabr].zmax-MD->Ele[inabr].zmin);
effKnabr=effKH(MD->Ele[inabr].Macropore,MD->DummyY[inabr+2*MD->NumEle],nabrAqDepth,MD->Ele[inabr].macD,MD->Ele[inabr].macKsatH,MD->Ele[inabr].vAreaF,MD->Ele[inabr].KsatH);
/* It should be weighted average. However, there is an ambiguity about distance used */
Avg_Ksat=0.5*(effK+effKnabr);
/* groundwater flow modeled by Darcy's law */
MD->FluxSub[i][j] = Avg_Ksat*Grad_Y_Sub*Avg_Y_Sub*MD->Ele[i].edge[j];
/***************************************************************************/
/* Surface Lateral Flux Calculation between Triangular elements Follows */
/***************************************************************************/
Dif_Y_Surf = (MD->SurfMode==1)?(MD->Ele[i].zmax-MD->Ele[MD->Ele[i].nabr[j] - 1].zmax):(MD->DummyY[i] + MD->Ele[i].zmax) - (MD->DummyY[MD->Ele[i].nabr[j] - 1] + MD->Ele[MD->Ele[i].nabr[j] - 1].zmax);
// Avg_Y_Surf=avgY(MD->Ele[i].zmax,MD->Ele[MD->Ele[i].nabr[j] - 1].zmax,MD->DummyY[i],MD->DummyY[MD->Ele[i].nabr[j]-1]);
Avg_Y_Surf=avgY(Dif_Y_Surf,MD->DummyY[i],MD->DummyY[MD->Ele[i].nabr[j]-1]);
Grad_Y_Surf = Dif_Y_Surf/Distance;
Avg_Sf=sqrt(pow(MD->Ele[i].dhBYdx,2)+pow(MD->Ele[i].dhBYdy,2));
Avg_Sf=(MD->SurfMode==1)?(Grad_Y_Surf>0?Grad_Y_Surf:EPS/pow(10.0,6)):(Avg_Sf>EPS/pow(10.0,6))?Avg_Sf:EPS/pow(10.0,6);
/* Weighting needed */
Avg_Rough = 0.5*(MD->Ele[i].Rough + MD->Ele[MD->Ele[i].nabr[j] - 1].Rough);
CrossA = Avg_Y_Surf*MD->Ele[i].edge[j];
OverlandFlow(MD->FluxSurf,i,j, Avg_Y_Surf,Grad_Y_Surf,Avg_Sf,CrossA,Avg_Rough);
}
/************************************************/
/* Boundary condition Flux Calculations Follows */
/************************************************/
else
{
/* No flow (natural) boundary condition is default */
if(MD->Ele[i].BC[j] == 0)
{
MD->FluxSurf[i][j] = 0;
MD->FluxSub[i][j] = 0;
}
else if(MD->Ele[i].BC[j] == 1) /* Note: ideally different boundary conditions need to be incorporated for surf and subsurf respectively */
/* Note: the formulation assumes only dirichlet TS right now */
{
MD->FluxSurf[i][j] = 0; /* Note the assumption here is no flow for surface*/
Dif_Y_Sub = (MD->DummyY[i+2*MD->NumEle] + MD->Ele[i].zmin) - Interpolation(&MD->TSD_EleBC[(MD->Ele[i].BC[j])-1], t);
Avg_Y_Sub = avgY(Dif_Y_Sub,MD->DummyY[i+2*MD->NumEle],(Interpolation(&MD->TSD_EleBC[(MD->Ele[i].BC[j])-1], t) - MD->Ele[i].zmin));
// Avg_Y_Sub = (MD->DummyY[i+2*MD->NumEle] + (Interpolation(&MD->TSD_EleBC[(MD->Ele[i].BC[j])-1], t) - MD->Ele[i].zmin))/2;
/* Minimum Distance from circumcenter to the edge of the triangle on which BDD. condition is defined*/
Distance = sqrt(pow(MD->Ele[i].edge[0]*MD->Ele[i].edge[1]*MD->Ele[i].edge[2]/(4*MD->Ele[i].area), 2) - pow(MD->Ele[i].edge[j]/2, 2));
effK=effKH(MD->Ele[i].Macropore,MD->DummyY[i+2*MD->NumEle],AquiferDepth,MD->Ele[i].macD,MD->Ele[i].macKsatH,MD->Ele[i].vAreaF,MD->Ele[i].KsatH);
Avg_Ksat = effK;
Grad_Y_Sub = Dif_Y_Sub/Distance;
MD->FluxSub[i][j] = Avg_Ksat*Grad_Y_Sub*Avg_Y_Sub*MD->Ele[i].edge[j];
}
else /* Neumann BC (Note: MD->Ele[i].BC[j] value have to be = 2+(index of neumann boundary TS)*/
{
MD->FluxSurf[i][j] = Interpolation(&MD->TSD_EleBC[(MD->Ele[i].BC[j])-1], t);
MD->FluxSub[i][j] = Interpolation(&MD->TSD_EleBC[(-MD->Ele[i].BC[j])-1], t);
}
}
}
/**************************************************************************************************/
/* Evaporation Module: [2] is ET from OVLF/SUBF, [1] is Transpiration, [0] is ET loss from canopy */
/**************************************************************************************************/
/* Physical Unit Dependent. Change this */
Rn = Interpolation(&MD->TSD_Rn[MD->Ele[i].Rn-1], t);
// G = Interpolation(&MD->TSD_G[MD->Ele[i].G-1], t);
T = Interpolation(&MD->TSD_Temp[MD->Ele[i].temp-1], t);
Vel = Interpolation(&MD->TSD_WindVel[MD->Ele[i].WindVel-1], t);
RH = Interpolation(&MD->TSD_Humidity[MD->Ele[i].humidity-1], t);
VP = Interpolation(&MD->TSD_Pressure[MD->Ele[i].pressure-1], t);
P = 101.325*pow(10,3)*pow((293-0.0065*MD->Ele[i].zmax)/293,5.26);
Delta = 2503*pow(10,3)*exp(17.27*T/(T+237.3))/(pow(237.3 + T, 2));
Gamma = P*1.0035*0.92/(0.622*2441);
LAI = Interpolation(&MD->TSD_LAI[MD->Ele[i].LC-1], t);
/* zero_dh=Interpolation(&MD->TSD_DH[MD->Ele[i].LC-1], t);
cnpy_h = zero_dh/(1.1*(0.0000001+log(1+pow(0.007*LAI,0.25))));
if(LAI<2.85)
{
rl= 0.0002 + 0.3*cnpy_h*pow(0.07*LAI,0.5);
}
else
{
rl= 0.3*cnpy_h*(1-(zero_dh/cnpy_h));
} */
rl=Interpolation(&MD->TSD_RL[MD->Ele[i].LC-1], t);
r_a = log(MD->Ele[i].windH/rl)*log(10*MD->Ele[i].windH/rl)/(Vel*0.16);
MD->EleET[i][2] = MD->pcCal.Et2*(1-MD->Ele[i].VegFrac)*(Rn*(1-MD->Ele[i].Albedo)*Delta+(1.2*1003.5*((VP/RH)-VP)/r_a))/(1000.0*2441000.0*(Delta+Gamma));
if((MD->Ele[i].zmax-MD->Ele[i].zmin)-MD->DummyY[i+2*MD->NumEle]<MD->Ele[i].RzD)
{
elemSatn=1.0;
}
else
{
elemSatn = ((MD->DummyY[i+MD->NumEle]/(AquiferDepth-MD->DummyY[i+2*MD->NumEle]))>1)?1:((MD->DummyY[i+MD->NumEle]/(AquiferDepth-MD->DummyY[i+2*MD->NumEle]))<0)?0:0.5*(1-cos(3.14*(MD->DummyY[i+MD->NumEle]/(AquiferDepth-MD->DummyY[i+2*MD->NumEle]))));
}
if(LAI>0.0)
{
Rmax = 5000.0/(60*UNIT_C); /* Unit day_per_m */
f_r= 1.1*Rn*(1-exp(-LAI))/(MD->Ele[i].Rs_ref*LAI);
alpha_r= (1+f_r)/(1+(MD->Ele[i].Rmin/Rmax));
eta_s= 1- 0.0016*(pow((24.85-T),2));
beta_s= (elemSatn>EPS/1000.0)?elemSatn:EPS/1000.0;
r_s=((MD->Ele[i].Rmin*alpha_r/(beta_s*LAI*pow(eta_s,4)))> Rmax)?Rmax:(MD->Ele[i].Rmin*alpha_r/(beta_s*LAI*pow(eta_s,4)));
MD->EleET[i][1] = MD->pcCal.Et1*(LAI/MD->Ele[i].LAImax)*MD->Ele[i].VegFrac*(1-pow(((MD->EleIS[i]+MD->EleSnowCanopy[i]<0)?0:(MD->EleIS[i]+MD->EleSnowCanopy[i]))/(MD->EleISmax[i]+MD->EleISsnowmax[i]),2.0/3))*(Rn*(1-MD->Ele[i].Albedo)*Delta+(1.2*1003.5*((VP/RH)-VP)/r_a))/(1000*2441000.0*(Delta+Gamma*(1+r_s/r_a)));
}
else
{
MD->EleET[i][1] =0.0;
}
/* Note: Assumption is OVL flow depth less than EPS/100 is immobile water */
if(MD->DummyY[i+2*MD->NumEle]>AquiferDepth-MD->Ele[i].infD)
{
/* Assumption: infD<macD */
Grad_Y_Sub=(MD->DummyY[i]+MD->Ele[i].zmax-(MD->DummyY[i+2*MD->NumEle]+MD->Ele[i].zmin))/MD->Ele[i].infD;
Grad_Y_Sub=((MD->DummyY[i]<EPS/100)&&(Grad_Y_Sub>0))?0:Grad_Y_Sub;
elemSatn=1.0;
satKfunc=pow(elemSatn,0.5)*pow(-1+pow(1-pow(elemSatn,MD->Ele[i].Beta/(MD->Ele[i].Beta-1)),(MD->Ele[i].Beta-1)/MD->Ele[i].Beta),2);
effK=(MD->Ele[i].Macropore==1)?effKV(satKfunc,Grad_Y_Sub,MD->Ele[i].macKsatV,MD->Ele[i].infKsatV,MD->Ele[i].hAreaF):MD->Ele[i].infKsatV;
MD->EleViR[i] = effK*Grad_Y_Sub;
MD->Recharge[i] = MD->EleViR[i];
DY[i+MD->NumEle] = DY[i+MD->NumEle]+MD->EleViR[i]-MD->Recharge[i];
DY[i+2*MD->NumEle]=DY[i+2*MD->NumEle]+MD->Recharge[i]-((MD->DummyY[i]<EPS/100)?MD->EleET[i][2]:0);
}
else
{
Deficit=AquiferDepth-MD->DummyY[i+2*MD->NumEle];
elemSatn=((MD->DummyY[i+MD->NumEle]/Deficit)>1)?1:((MD->DummyY[i+MD->NumEle]<=0)?EPS/1000.0:MD->DummyY[i+MD->NumEle]/Deficit);
/* Note: for psi calculation using van genuchten relation, cutting the psi-sat tail at small saturation can be performed for computational advantage. If you dont' want to perform this, comment the statement that follows */
elemSatn=(elemSatn<multF*EPS)?multF*EPS:elemSatn;
Avg_Y_Sub=(-(pow(pow(1/elemSatn,MD->Ele[i].Beta/(MD->Ele[i].Beta-1))-1,1/MD->Ele[i].Beta)/MD->Ele[i].Alpha)<MINpsi)?MINpsi:-(pow(pow(1/elemSatn,MD->Ele[i].Beta/(MD->Ele[i].Beta-1))-1,1/MD->Ele[i].Beta)/MD->Ele[i].Alpha);
TotalY_Ele=Avg_Y_Sub+MD->Ele[i].zmin+AquiferDepth-MD->Ele[i].infD;
Grad_Y_Sub=(MD->DummyY[i]+MD->Ele[i].zmax-TotalY_Ele)/MD->Ele[i].infD;
Grad_Y_Sub=((MD->DummyY[i]<EPS/100)&&(Grad_Y_Sub>0))?0:Grad_Y_Sub;
satKfunc=pow(elemSatn,0.5)*pow(-1+pow(1-pow(elemSatn,MD->Ele[i].Beta/(MD->Ele[i].Beta-1)),(MD->Ele[i].Beta-1)/MD->Ele[i].Beta),2);
effK=(MD->Ele[i].Macropore==1)?effKV(satKfunc,Grad_Y_Sub,MD->Ele[i].macKsatV,MD->Ele[i].infKsatV,MD->Ele[i].hAreaF):MD->Ele[i].infKsatV;
// MD->EleViR[i] = 0.5*(effK+MD->Ele[i].infKsatV)*Grad_Y_Sub;
MD->EleViR[i] = 0.5*(effK)*Grad_Y_Sub;
/* Harmonic mean formulation. Note that if unsaturated zone has low saturation, satKfunc becomes very small. Use arithmetic mean instead*/
// MD->Recharge[i] = (elemSatn==0.0)?0:(Deficit<=0)?0:(MD->Ele[i].KsatV*satKfunc*(MD->Ele[i].Alpha*Deficit-2*pow(-1+pow(elemSatn,MD->Ele[i].Beta/(-MD->Ele[i].Beta+1)),1/MD->Ele[i].Beta))/(MD->Ele[i].Alpha*((Deficit+MD->DummyY[i+2*MD->NumEle]*satKfunc))));
/* Arithmetic Mean Formulation */
effK=(MD->Ele[i].Macropore==1)?((MD->DummyY[i+2*MD->NumEle]>AquiferDepth-MD->Ele[i].macD)?effK:MD->Ele[i].KsatV*satKfunc):MD->Ele[i].KsatV*satKfunc;
MD->Recharge[i] = (elemSatn==0.0)?0:(Deficit<=0)?0:(MD->Ele[i].KsatV*MD->DummyY[i+2*MD->NumEle]+effK*Deficit)*(MD->Ele[i].Alpha*Deficit-2*pow(-1+pow(elemSatn,MD->Ele[i].Beta/(-MD->Ele[i].Beta+1)),1/MD->Ele[i].Beta))/(MD->Ele[i].Alpha*pow(Deficit+MD->DummyY[i+2*MD->NumEle],2));
MD->EleET[i][2]=(MD->DummyY[i]<EPS/100)?elemSatn*MD->EleET[i][2]:MD->EleET[i][2];
DY[i+MD->NumEle] = DY[i+MD->NumEle]+MD->EleViR[i]-MD->Recharge[i]-((MD->DummyY[i]<EPS/100)?MD->EleET[i][2]:0);
DY[i+2*MD->NumEle]=DY[i+2*MD->NumEle]+MD->Recharge[i];
}
DY[i] = DY[i]+MD->EleNetPrep[i] - MD->EleViR[i]-((MD->DummyY[i]<EPS/100)?0:MD->EleET[i][2]);
if(MD->DummyY[i+2*MD->NumEle]>AquiferDepth-MD->Ele[i].RzD)
{
DY[i+2*MD->NumEle]=DY[i+2*MD->NumEle]-MD->EleET[i][1];
}
else
{
DY[i+MD->NumEle] = DY[i+MD->NumEle]-MD->EleET[i][1];
}
}
/* Lateral Flux Calculation between River-River and River-Triangular elements Follows */
for(i=0; i<MD->NumRiv; i++)
{
TotalY_Riv = MD->DummyY[i + 3*MD->NumEle] + MD->Riv[i].zmin;
Perem = CS_AreaOrPerem(MD->Riv_Shape[MD->Riv[i].shape - 1].interpOrd,MD->DummyY[i + 3*MD->NumEle],MD->Riv[i].coeff,2);
if(MD->Riv[i].down > 0)
{
/****************************************************************/
/* Lateral Flux Calculation between River-River element Follows */
/****************************************************************/
TotalY_Riv_down = MD->DummyY[MD->Riv[i].down - 1 + 3*MD->NumEle] + MD->Riv[MD->Riv[i].down - 1].zmin;
Perem_down = CS_AreaOrPerem(MD->Riv_Shape[MD->Riv[MD->Riv[i].down - 1].shape - 1].interpOrd,MD->DummyY[MD->Riv[i].down - 1 + 3*MD->NumEle],MD->Riv[MD->Riv[i].down - 1].coeff,2);
Avg_Perem = (Perem + Perem_down)/2.0;
Avg_Rough = (MD->Riv_Mat[MD->Riv[i].material - 1].Rough + MD->Riv_Mat[MD->Riv[MD->Riv[i].down - 1].material-1].Rough)/2.0;
Distance = 0.5*(MD->Riv[i].Length+MD->Riv[MD->Riv[i].down - 1].Length);
Dif_Y_Riv=(MD->RivMode==1)?(MD->Riv[i].zmin-MD->Riv[MD->Riv[i].down - 1].zmin):(TotalY_Riv - TotalY_Riv_down);
Grad_Y_Riv = Dif_Y_Riv/Distance;
Avg_Sf = (Grad_Y_Riv>0)?Grad_Y_Riv:EPS;
CrossA = CS_AreaOrPerem(MD->Riv_Shape[MD->Riv[i].shape - 1].interpOrd,MD->DummyY[i + 3*MD->NumEle],MD->Riv[i].coeff,1);
CrossAdown = CS_AreaOrPerem(MD->Riv_Shape[MD->Riv[MD->Riv[i].down - 1].shape - 1].interpOrd,MD->DummyY[MD->Riv[i].down - 1 + 3*MD->NumEle],MD->Riv[MD->Riv[i].down - 1].coeff,1);
AvgCrossA=0.5*(CrossA+CrossAdown);
Avg_Y_Riv=(Avg_Perem==0)?0:(AvgCrossA/Avg_Perem);
OverlandFlow(MD->FluxRiv,i,1, Avg_Y_Riv,Grad_Y_Riv,Avg_Sf,CrossA,Avg_Rough);
/* accumulate to get in-flow for down segments: [0] for inflow, [1] for outflow */
MD->FluxRiv[MD->Riv[i].down - 1][0] = MD->FluxRiv[MD->Riv[i].down - 1][0] - MD->FluxRiv[i][1];
/************************************************************************/
/* Lateral Flux Calculation between Element Beneath River (EBR) and EBR */
/************************************************************************/
TotalY_Ele = MD->DummyY[i + 3*MD->NumEle+MD->NumRiv] + MD->Ele[i+MD->NumEle].zmin;
TotalY_Ele_down = MD->DummyY[MD->Riv[i].down - 1 + 3*MD->NumEle+MD->NumRiv] + MD->Ele[MD->Riv[i].down - 1+MD->NumEle].zmin;
Wid = CS_AreaOrPerem(MD->Riv_Shape[MD->Riv[i].shape - 1].interpOrd,MD->Riv[i].depth,MD->Riv[i].coeff,3);
Wid_down = CS_AreaOrPerem(MD->Riv_Shape[MD->Riv[MD->Riv[i].down - 1].shape - 1].interpOrd,MD->Riv[MD->Riv[i].down - 1].depth,MD->Riv[MD->Riv[i].down - 1].coeff,3);
Avg_Wid = (Wid + Wid_down)/2.0;
Distance = 0.5*(MD->Riv[i].Length+MD->Riv[MD->Riv[i].down - 1].Length);
Dif_Y_Sub=TotalY_Ele - TotalY_Ele_down;
// Avg_Y_Sub=avgY(MD->Ele[i+MD->NumEle].zmin,MD->Ele[MD->Riv[i].down - 1+MD->NumEle].zmin,MD->DummyY[i + 3*MD->NumEle+MD->NumRiv],MD->DummyY[MD->Riv[i].down - 1 + 3*MD->NumEle+MD->NumRiv]);
Avg_Y_Sub=avgY(Dif_Y_Sub,MD->DummyY[i + 3*MD->NumEle+MD->NumRiv],MD->DummyY[MD->Riv[i].down - 1 + 3*MD->NumEle+MD->NumRiv]);
Grad_Y_Sub = Dif_Y_Sub/Distance;
/* take care of macropore effect */
AquiferDepth=MD->Ele[i+MD->NumEle].zmax-MD->Ele[i+MD->NumEle].zmin;
// effK=MD->Ele[i+MD->NumEle].KsatH;
effK=0.5*(effKH(MD->Ele[MD->Riv[i].LeftEle-1].Macropore,MD->DummyY[MD->Riv[i].LeftEle-1+2*MD->NumEle],MD->Ele[MD->Riv[i].LeftEle-1].zmax-MD->Ele[MD->Riv[i].LeftEle-1].zmin,MD->Ele[MD->Riv[i].LeftEle-1].macD,MD->Ele[MD->Riv[i].LeftEle-1].macKsatH,MD->Ele[MD->Riv[i].LeftEle-1].vAreaF,MD->Ele[MD->Riv[i].LeftEle-1].KsatH)+effKH(MD->Ele[MD->Riv[i].RightEle-1].Macropore,MD->DummyY[MD->Riv[i].RightEle-1+2*MD->NumEle],MD->Ele[MD->Riv[i].RightEle-1].zmax-MD->Ele[MD->Riv[i].RightEle-1].zmin,MD->Ele[MD->Riv[i].RightEle-1].macD,MD->Ele[MD->Riv[i].RightEle-1].macKsatH,MD->Ele[MD->Riv[i].RightEle-1].vAreaF,MD->Ele[MD->Riv[i].RightEle-1].KsatH));
inabr=MD->Riv[i].down - 1;
nabrAqDepth=(MD->Ele[inabr].zmax-MD->Ele[inabr].zmin);
// effKnabr=MD->Ele[inabr+MD->NumEle].KsatH;
effKnabr=0.5*(effKH(MD->Ele[MD->Riv[inabr].LeftEle-1].Macropore,MD->DummyY[MD->Riv[inabr].LeftEle-1+2*MD->NumEle],MD->Ele[MD->Riv[inabr].LeftEle-1].zmax-MD->Ele[MD->Riv[inabr].LeftEle-1].zmin,MD->Ele[MD->Riv[inabr].LeftEle-1].macD,MD->Ele[MD->Riv[inabr].LeftEle-1].macKsatH,MD->Ele[MD->Riv[inabr].LeftEle-1].vAreaF,MD->Ele[MD->Riv[inabr].LeftEle-1].KsatH)+effKH(MD->Ele[MD->Riv[inabr].RightEle-1].Macropore,MD->DummyY[MD->Riv[inabr].RightEle-1+2*MD->NumEle],MD->Ele[MD->Riv[inabr].RightEle-1].zmax-MD->Ele[MD->Riv[inabr].RightEle-1].zmin,MD->Ele[MD->Riv[inabr].RightEle-1].macD,MD->Ele[MD->Riv[inabr].RightEle-1].macKsatH,MD->Ele[MD->Riv[inabr].RightEle-1].vAreaF,MD->Ele[MD->Riv[inabr].RightEle-1].KsatH));
Avg_Ksat=0.5*(effK+effKnabr);
/* groundwater flow modeled by Darcy's law */
MD->FluxRiv[i][9] = Avg_Ksat*Grad_Y_Sub*Avg_Y_Sub*Avg_Wid;
/* accumulate to get in-flow for down segments: [10] for inflow, [9] for outflow */
MD->FluxRiv[MD->Riv[i].down - 1][10] = MD->FluxRiv[MD->Riv[i].down - 1][10] - MD->FluxRiv[i][9];
}
else
{
switch(MD->Riv[i].down)
{
case -1:
/* Dirichlet boundary condition */
TotalY_Riv_down = Interpolation(&MD->TSD_Riv[(MD->Riv[i].BC)-1], t) + (MD->Node[MD->Riv[i].ToNode-1].zmax -MD->Riv[i].depth);
Distance = sqrt(pow(MD->Riv[i].x - MD->Node[MD->Riv[i].ToNode-1].x, 2) + pow(MD->Riv[i].y - MD->Node[MD->Riv[i].ToNode-1].y, 2));
Grad_Y_Riv = (TotalY_Riv - TotalY_Riv_down)/Distance;
/* Note: do i need to change else part here for diff wave */
Avg_Sf = (MD->RivMode==1)?Grad_Y_Riv:Grad_Y_Riv;;
Avg_Rough = MD->Riv_Mat[MD->Riv[i].material-1].Rough;
Avg_Y_Riv = avgY(Grad_Y_Riv,MD->DummyY[i + 3*MD->NumEle],Interpolation(&MD->TSD_Riv[(MD->Riv[i].BC)-1], t));
Avg_Perem = Perem;
CrossA = CS_AreaOrPerem(MD->Riv_Shape[MD->Riv[i].shape - 1].interpOrd,MD->DummyY[i + 3*MD->NumEle],MD->Riv[i].coeff,1);
Avg_Y_Riv=(Perem==0)?0:(CrossA/Avg_Perem);
OverlandFlow(MD->FluxRiv,i,1, Avg_Y_Riv,Grad_Y_Riv,Avg_Sf,CrossA,Avg_Rough);
break;
case -2:
/* Neumann boundary condition */
MD->FluxRiv[i][1] = Interpolation(&MD->TSD_Riv[MD->Riv[i].BC-1], t);
break;
case -3:
/* zero-depth-gradient boundary conditions */
Distance = sqrt(pow(MD->Riv[i].x - MD->Node[MD->Riv[i].ToNode-1].x, 2) + pow(MD->Riv[i].y - MD->Node[MD->Riv[i].ToNode-1].y, 2));
Grad_Y_Riv = (MD->Riv[i].zmin - (MD->Node[MD->Riv[i].ToNode-1].zmax -MD->Riv[i].depth))/Distance;
Avg_Rough = MD->Riv_Mat[MD->Riv[i].material-1].Rough;
Avg_Y_Riv = MD->DummyY[i + 3*MD->NumEle];
Avg_Perem = Perem;
CrossA = CS_AreaOrPerem(MD->Riv_Shape[MD->Riv[i].shape - 1].interpOrd,MD->DummyY[i + 3*MD->NumEle],MD->Riv[i].coeff,1);
MD->FluxRiv[i][1] = sqrt(Grad_Y_Riv)*CrossA*((Avg_Perem>0)?pow(CrossA/Avg_Perem,2.0/3.0):0)/Avg_Rough;
break;
case -4:
/* Critical Depth boundary conditions */
CrossA = CS_AreaOrPerem(MD->Riv_Shape[MD->Riv[i].shape - 1].interpOrd,MD->DummyY[i + 3*MD->NumEle],MD->Riv[i].coeff,1);
MD->FluxRiv[i][1] = CrossA*sqrt(GRAV*UNIT_C*UNIT_C*MD->DummyY[i + 3*MD->NumEle]); /* Note the dependence on physical units */
break;
default:
printf("Fatal Error: River Routing Boundary Condition Type Is Wrong!");
exit(1);
}
/* Note: bdd condition for subsurface element can be changed. Assumption: No flow condition */
MD->FluxRiv[i][9]=0;
}
if(MD->Riv[i].LeftEle > 0)
{
/*****************************************************************************/
/* Lateral Surface Flux Calculation between River-Triangular element Follows */
/*****************************************************************************/
OLFeleToriv(MD->DummyY[MD->Riv[i].LeftEle - 1]+MD->Ele[MD->Riv[i].LeftEle - 1].zmax,MD->Ele[MD->Riv[i].LeftEle - 1].zmax,MD->Riv_Mat[MD->Riv[i].material-1].Cwr, MD->Riv[i].zmax,TotalY_Riv,MD->FluxRiv,i,2,MD->Riv[i].Length);
/*********************************************************************************/
/* Lateral Sub-surface Flux Calculation between River-Triangular element Follows */
/*********************************************************************************/
Dif_Y_Sub = (MD->DummyY[i+3*MD->NumEle] + MD->Riv[i].zmin) - (MD->DummyY[MD->Riv[i].LeftEle-1 + 2*MD->NumEle] + MD->Ele[MD->Riv[i].LeftEle-1].zmin);
// Avg_Y_Sub=(MD->DummyY[MD->Riv[i].LeftEle-1 + 2*MD->NumEle]+MD->Ele[MD->Riv[i].LeftEle-1].zmin-MD->Riv[i].zmin)>0?MD->DummyY[MD->Riv[i].LeftEle-1 + 2*MD->NumEle]+MD->Ele[MD->Riv[i].LeftEle-1].zmin-MD->Riv[i].zmin:0;
/* This is head at river edge representation */
// Avg_Y_Sub = ((MD->Riv[i].zmax-(MD->Ele[MD->Riv[i].LeftEle-1].zmax-MD->Ele[MD->Riv[i].LeftEle-1].zmin)+MD->DummyY[MD->Riv[i].LeftEle-1 + 2*MD->NumEle])>MD->Riv[i].zmin)?((MD->Riv[i].zmax-(MD->Ele[MD->Riv[i].LeftEle-1].zmax-MD->Ele[MD->Riv[i].LeftEle-1].zmin)+MD->DummyY[MD->Riv[i].LeftEle-1 + 2*MD->NumEle])-MD->Riv[i].zmin):0;
/* This is head in neighboring cell represention */
Avg_Y_Sub = MD->Ele[MD->Riv[i].LeftEle-1].zmin>MD->Riv[i].zmin?MD->DummyY[MD->Riv[i].LeftEle-1 + 2*MD->NumEle]:((MD->Ele[MD->Riv[i].LeftEle-1].zmin+MD->DummyY[MD->Riv[i].LeftEle-1 + 2*MD->NumEle])>MD->Riv[i].zmin?(MD->Ele[MD->Riv[i].LeftEle-1].zmin+MD->DummyY[MD->Riv[i].LeftEle-1 + 2*MD->NumEle]-MD->Riv[i].zmin):0);
// Avg_Y_Sub=avgY(MD->Riv[i].zmin,MD->Riv[i].zmin,MD->DummyY[i+3*MD->NumEle],Avg_Y_Sub);
Avg_Y_Sub=avgY(Dif_Y_Sub,MD->DummyY[i+3*MD->NumEle],Avg_Y_Sub);
effK=MD->Riv[i].KsatH;
Distance = sqrt(pow((MD->Riv[i].x - MD->Ele[MD->Riv[i].LeftEle - 1].x), 2) + pow((MD->Riv[i].y - MD->Ele[MD->Riv[i].LeftEle - 1].y), 2));
Grad_Y_Sub = Dif_Y_Sub/Distance;
/* take care of macropore effect */
inabr=MD->Riv[i].LeftEle-1;
AquiferDepth=(MD->Ele[inabr].zmax-MD->Ele[inabr].zmin);
effKnabr=effKH(MD->Ele[inabr].Macropore,MD->DummyY[inabr+2*MD->NumEle],AquiferDepth,MD->Ele[inabr].macD,MD->Ele[inabr].macKsatH,MD->Ele[inabr].vAreaF,MD->Ele[inabr].KsatH);
Avg_Ksat=0.5*(effK+effKnabr);
MD->FluxRiv[i][4]=MD->Riv[i].Length*Avg_Ksat*Grad_Y_Sub*Avg_Y_Sub;
/***********************************************************************************/
/* Lateral Flux between rectangular element (beneath river) and triangular element */
/***********************************************************************************/
Dif_Y_Sub = (MD->DummyY[i+3*MD->NumEle+MD->NumRiv] + MD->Ele[i+MD->NumEle].zmin) - (MD->DummyY[MD->Riv[i].LeftEle-1 + 2*MD->NumEle] + MD->Ele[MD->Riv[i].LeftEle-1].zmin);
// Avg_Y_Sub=((MD->DummyY[MD->Riv[i].LeftEle-1 + 2*MD->NumEle]+MD->Ele[MD->Riv[i].LeftEle-1].zmin-MD->Riv[i].zmin)>0)?MD->Riv[i].zmin-MD->Ele[MD->Riv[i].LeftEle-1].zmin:MD->DummyY[MD->Riv[i].LeftEle-1 + 2*MD->NumEle];
/* This is head at river edge representation */
// Avg_Y_Sub = ((MD->Riv[i].zmax-(MD->Ele[MD->Riv[i].LeftEle-1].zmax-MD->Ele[MD->Riv[i].LeftEle-1].zmin)+MD->DummyY[MD->Riv[i].LeftEle-1 + 2*MD->NumEle])>MD->Riv[i].zmin)?MD->Riv[i].zmin-(MD->Riv[i].zmax-(MD->Ele[MD->Riv[i].LeftEle-1].zmax-MD->Ele[MD->Riv[i].LeftEle-1].zmin)):MD->DummyY[MD->Riv[i].LeftEle-1 + 2*MD->NumEle];
/* This is head in neighboring cell represention */
Avg_Y_Sub = MD->Ele[MD->Riv[i].LeftEle-1].zmin>MD->Riv[i].zmin?0:((MD->Ele[MD->Riv[i].LeftEle-1].zmin+MD->DummyY[MD->Riv[i].LeftEle-1 + 2*MD->NumEle])>MD->Riv[i].zmin?(MD->Riv[i].zmin-MD->Ele[MD->Riv[i].LeftEle-1].zmin):MD->DummyY[MD->Riv[i].LeftEle-1 + 2*MD->NumEle]);
// Avg_Y_Sub=avgY(MD->Ele[i+MD->NumEle].zmin,MD->Ele[MD->Riv[i].LeftEle-1].zmin,MD->DummyY[i+3*MD->NumEle+MD->NumRiv],Avg_Y_Sub);
Avg_Y_Sub=avgY(Dif_Y_Sub,MD->DummyY[i+3*MD->NumEle+MD->NumRiv],Avg_Y_Sub);
AquiferDepth=(MD->Ele[i+MD->NumEle].zmax-MD->Ele[i+MD->NumEle].zmin);
// effK=MD->Ele[i+MD->NumEle].KsatH;
effK=0.5*(effKH(MD->Ele[MD->Riv[i].LeftEle-1].Macropore,MD->DummyY[MD->Riv[i].LeftEle-1+2*MD->NumEle],MD->Ele[MD->Riv[i].LeftEle-1].zmax-MD->Ele[MD->Riv[i].LeftEle-1].zmin,MD->Ele[MD->Riv[i].LeftEle-1].macD,MD->Ele[MD->Riv[i].LeftEle-1].macKsatH,MD->Ele[MD->Riv[i].LeftEle-1].vAreaF,MD->Ele[MD->Riv[i].LeftEle-1].KsatH)+effKH(MD->Ele[MD->Riv[i].RightEle-1].Macropore,MD->DummyY[MD->Riv[i].RightEle-1+2*MD->NumEle],MD->Ele[MD->Riv[i].RightEle-1].zmax-MD->Ele[MD->Riv[i].RightEle-1].zmin,MD->Ele[MD->Riv[i].RightEle-1].macD,MD->Ele[MD->Riv[i].RightEle-1].macKsatH,MD->Ele[MD->Riv[i].RightEle-1].vAreaF,MD->Ele[MD->Riv[i].RightEle-1].KsatH));
inabr=MD->Riv[i].LeftEle-1;
nabrAqDepth=(MD->Ele[inabr].zmax-MD->Ele[inabr].zmin);
effKnabr=effKH(MD->Ele[inabr].Macropore,MD->DummyY[inabr+2*MD->NumEle],nabrAqDepth,MD->Ele[inabr].macD,MD->Ele[inabr].macKsatH,MD->Ele[inabr].vAreaF,MD->Ele[inabr].KsatH);
Avg_Ksat=0.5*(effK+effKnabr);
Grad_Y_Sub = Dif_Y_Sub/Distance; /* take care of macropore effect */
MD->FluxRiv[i][7]=MD->Riv[i].Length*Avg_Ksat*Grad_Y_Sub*Avg_Y_Sub;
/* replace flux term */
for(j=0; j < 3; j++)
{
if(MD->Ele[MD->Riv[i].LeftEle - 1].nabr[j] == MD->Riv[i].RightEle)
{
MD->FluxSurf[MD->Riv[i].LeftEle - 1][j] = -MD->FluxRiv[i][2];
MD->FluxSub[MD->Riv[i].LeftEle - 1][j] = -MD->FluxRiv[i][4];
MD->FluxSub[MD->Riv[i].LeftEle - 1][j] = MD->FluxSub[MD->Riv[i].LeftEle - 1][j] -MD->FluxRiv[i][7];
break;
}
}
}
if (MD->Riv[i].RightEle > 0)
{
/*****************************************************************************/
/* Lateral Surface Flux Calculation between River-Triangular element Follows */
/*****************************************************************************/
OLFeleToriv(MD->DummyY[MD->Riv[i].RightEle - 1]+MD->Ele[MD->Riv[i].RightEle - 1].zmax,MD->Ele[MD->Riv[i].RightEle - 1].zmax,MD->Riv_Mat[MD->Riv[i].material-1].Cwr, MD->Riv[i].zmax,TotalY_Riv,MD->FluxRiv,i,3,MD->Riv[i].Length);
/*********************************************************************************/
/* Lateral Sub-surface Flux Calculation between River-Triangular element Follows */
/*********************************************************************************/
Dif_Y_Sub = (MD->DummyY[i+3*MD->NumEle] + MD->Riv[i].zmin) - (MD->DummyY[MD->Riv[i].RightEle-1 + 2*MD->NumEle] + MD->Ele[MD->Riv[i].RightEle-1].zmin);
// Avg_Y_Sub=(MD->DummyY[MD->Riv[i].RightEle-1 + 2*MD->NumEle]+MD->Ele[MD->Riv[i].RightEle-1].zmin-MD->Riv[i].zmin>0)?MD->DummyY[MD->Riv[i].RightEle-1 + 2*MD->NumEle]+MD->Ele[MD->Riv[i].RightEle-1].zmin-MD->Riv[i].zmin:0;
/* This is head at river edge representation */
// Avg_Y_Sub = ((MD->Riv[i].zmax-(MD->Ele[MD->Riv[i].RightEle-1].zmax-MD->Ele[MD->Riv[i].RightEle-1].zmin)+MD->DummyY[MD->Riv[i].RightEle-1 + 2*MD->NumEle])>MD->Riv[i].zmin)?((MD->Riv[i].zmax-(MD->Ele[MD->Riv[i].RightEle-1].zmax-MD->Ele[MD->Riv[i].RightEle-1].zmin)+MD->DummyY[MD->Riv[i].RightEle-1 + 2*MD->NumEle])-MD->Riv[i].zmin):0;
/* This is head in neighboring cell represention */
Avg_Y_Sub = MD->Ele[MD->Riv[i].RightEle-1].zmin>MD->Riv[i].zmin?MD->DummyY[MD->Riv[i].RightEle-1 + 2*MD->NumEle]:((MD->Ele[MD->Riv[i].RightEle-1].zmin+MD->DummyY[MD->Riv[i].RightEle-1 + 2*MD->NumEle])>MD->Riv[i].zmin?(MD->Ele[MD->Riv[i].RightEle-1].zmin+MD->DummyY[MD->Riv[i].RightEle-1 + 2*MD->NumEle]-MD->Riv[i].zmin):0);
// Avg_Y_Sub=avgY(MD->Riv[i].zmin,MD->Riv[i].zmin,MD->DummyY[i+3*MD->NumEle],Avg_Y_Sub);
Avg_Y_Sub=avgY(Dif_Y_Sub,MD->DummyY[i+3*MD->NumEle],Avg_Y_Sub);
effK=MD->Riv[i].KsatH;
Distance = sqrt(pow((MD->Riv[i].x - MD->Ele[MD->Riv[i].RightEle - 1].x), 2) + pow((MD->Riv[i].y - MD->Ele[MD->Riv[i].RightEle - 1].y), 2));
Grad_Y_Sub = Dif_Y_Sub/Distance;
/* take care of macropore effect */
inabr=MD->Riv[i].RightEle-1;
AquiferDepth=(MD->Ele[inabr].zmax-MD->Ele[inabr].zmin);
effKnabr=effKH(MD->Ele[inabr].Macropore,MD->DummyY[inabr+2*MD->NumEle],AquiferDepth,MD->Ele[inabr].macD,MD->Ele[inabr].macKsatH,MD->Ele[inabr].vAreaF,MD->Ele[inabr].KsatH);
Avg_Ksat=0.5*(effK+effKnabr);
MD->FluxRiv[i][5]=MD->Riv[i].Length*Avg_Ksat*Grad_Y_Sub*Avg_Y_Sub;
/***********************************************************************************/
/* Lateral Flux between rectangular element (beneath river) and triangular element */
/***********************************************************************************/
Dif_Y_Sub = (MD->DummyY[i+3*MD->NumEle+MD->NumRiv] + MD->Ele[i+MD->NumEle].zmin) - (MD->DummyY[MD->Riv[i].RightEle-1 + 2*MD->NumEle] + MD->Ele[MD->Riv[i].RightEle-1].zmin);
// Avg_Y_Sub=((MD->DummyY[MD->Riv[i].RightEle-1 + 2*MD->NumEle]+MD->Ele[MD->Riv[i].RightEle-1].zmin-MD->Riv[i].zmin)>0)?MD->Riv[i].zmin-MD->Ele[MD->Riv[i].RightEle-1].zmin:MD->DummyY[MD->Riv[i].RightEle-1 + 2*MD->NumEle];
/* This is head at river edge representation */
// Avg_Y_Sub = ((MD->Riv[i].zmax-(MD->Ele[MD->Riv[i].RightEle-1].zmax-MD->Ele[MD->Riv[i].RightEle-1].zmin)+MD->DummyY[MD->Riv[i].RightEle-1 + 2*MD->NumEle])>MD->Riv[i].zmin)?MD->Riv[i].zmin-(MD->Riv[i].zmax-(MD->Ele[MD->Riv[i].RightEle-1].zmax-MD->Ele[MD->Riv[i].RightEle-1].zmin)):MD->DummyY[MD->Riv[i].RightEle-1 + 2*MD->NumEle];
/* This is head in neighboring cell represention */
Avg_Y_Sub = MD->Ele[MD->Riv[i].RightEle-1].zmin>MD->Riv[i].zmin?0:((MD->Ele[MD->Riv[i].RightEle-1].zmin+MD->DummyY[MD->Riv[i].RightEle-1 + 2*MD->NumEle])>MD->Riv[i].zmin?(MD->Riv[i].zmin-MD->Ele[MD->Riv[i].RightEle-1].zmin):MD->DummyY[MD->Riv[i].RightEle-1 + 2*MD->NumEle]);
// Avg_Y_Sub=avgY(MD->Ele[i+MD->NumEle].zmin,MD->Ele[MD->Riv[i].RightEle-1].zmin,MD->DummyY[i+3*MD->NumEle+MD->NumRiv],Avg_Y_Sub);
Avg_Y_Sub=avgY(Dif_Y_Sub,MD->DummyY[i+3*MD->NumEle+MD->NumRiv],Avg_Y_Sub);
AquiferDepth=(MD->Ele[i+MD->NumEle].zmax-MD->Ele[i+MD->NumEle].zmin);
// effK=MD->Ele[i+MD->NumEle].KsatH;
effK=0.5*(effKH(MD->Ele[MD->Riv[i].LeftEle-1].Macropore,MD->DummyY[MD->Riv[i].LeftEle-1+2*MD->NumEle],MD->Ele[MD->Riv[i].LeftEle-1].zmax-MD->Ele[MD->Riv[i].LeftEle-1].zmin,MD->Ele[MD->Riv[i].LeftEle-1].macD,MD->Ele[MD->Riv[i].LeftEle-1].macKsatH,MD->Ele[MD->Riv[i].LeftEle-1].vAreaF,MD->Ele[MD->Riv[i].LeftEle-1].KsatH)+effKH(MD->Ele[MD->Riv[i].RightEle-1].Macropore,MD->DummyY[MD->Riv[i].RightEle-1+2*MD->NumEle],MD->Ele[MD->Riv[i].RightEle-1].zmax-MD->Ele[MD->Riv[i].RightEle-1].zmin,MD->Ele[MD->Riv[i].RightEle-1].macD,MD->Ele[MD->Riv[i].RightEle-1].macKsatH,MD->Ele[MD->Riv[i].RightEle-1].vAreaF,MD->Ele[MD->Riv[i].RightEle-1].KsatH));
inabr=MD->Riv[i].RightEle-1;
nabrAqDepth=(MD->Ele[inabr].zmax-MD->Ele[inabr].zmin);
effKnabr=effKH(MD->Ele[inabr].Macropore,MD->DummyY[inabr+2*MD->NumEle],nabrAqDepth,MD->Ele[inabr].macD,MD->Ele[inabr].macKsatH,MD->Ele[inabr].vAreaF,MD->Ele[inabr].KsatH);
Avg_Ksat=0.5*(effK+effKnabr);
Grad_Y_Sub = Dif_Y_Sub/Distance; /* take care of macropore effect */
MD->FluxRiv[i][8]=MD->Riv[i].Length*Avg_Ksat*Grad_Y_Sub*Avg_Y_Sub;
/* replace flux item */
for(j=0; j < 3; j++)
{
if(MD->Ele[MD->Riv[i].RightEle - 1].nabr[j] == MD->Riv[i].LeftEle)
{
MD->FluxSurf[MD->Riv[i].RightEle - 1][j] = -MD->FluxRiv[i][3];
MD->FluxSub[MD->Riv[i].RightEle - 1][j] = -MD->FluxRiv[i][5];
MD->FluxSub[MD->Riv[i].RightEle - 1][j] = MD->FluxSub[MD->Riv[i].RightEle - 1][j] -MD->FluxRiv[i][8];
break;
}
}
}
Avg_Wid=CS_AreaOrPerem(MD->Riv_Shape[MD->Riv[i].shape - 1].interpOrd,MD->DummyY[i + 3*MD->NumEle],MD->Riv[i].coeff,3);
Dif_Y_Riv=(MD->Riv[i].zmin-(MD->DummyY[i + 3*MD->NumEle+MD->NumRiv]+MD->Ele[i+MD->NumEle].zmin))>0?MD->DummyY[i + 3*MD->NumEle]:MD->DummyY[i + 3*MD->NumEle]+MD->Riv[i].zmin-(MD->DummyY[i + 3*MD->NumEle+MD->NumRiv]+MD->Ele[i+MD->NumEle].zmin);
Grad_Y_Riv=Dif_Y_Riv/MD->Riv[i].bedThick;
MD->FluxRiv[i][6]=MD->Riv[i].KsatV*Avg_Wid*MD->Riv[i].Length*Grad_Y_Riv;
}
for(i=0; i<MD->NumEle; i++)
{
for(j=0; j<3; j++)
{
DY[i] = DY[i] - MD->FluxSurf[i][j]/MD->Ele[i].area;
DY[i+2*MD->NumEle] = DY[i+2*MD->NumEle] - MD->FluxSub[i][j]/MD->Ele[i].area;
}
DY[i+MD->NumEle] = DY[i+MD->NumEle]/(MD->Ele[i].Porosity*UNIT_C);
DY[i+2*MD->NumEle] = DY[i+2*MD->NumEle]/(MD->Ele[i].Porosity*UNIT_C);
DY[i]=DY[i]/(UNIT_C);
}
for(i=0; i<MD->NumRiv; i++)
{
for(j=0;j<=6;j++)
{
/* Note the limitation due to d(v)/dt=a*dy/dt+y*da/dt for CS other than rectangle */
DY[i+3*MD->NumEle] = DY[i+3*MD->NumEle]-MD->FluxRiv[i][j]/(MD->Riv[i].Length*CS_AreaOrPerem(MD->Riv_Shape[MD->Riv[i].shape - 1].interpOrd,MD->Riv[i].depth,MD->Riv[i].coeff,3));
}
DY[i+3*MD->NumEle] = DY[i+3*MD->NumEle]/(UNIT_C);
DY[i+3*MD->NumEle+MD->NumRiv] = DY[i+3*MD->NumEle+MD->NumRiv] -MD->FluxRiv[i][7] -MD->FluxRiv[i][8]-MD->FluxRiv[i][9] -MD->FluxRiv[i][10]+MD->FluxRiv[i][6];
DY[i+3*MD->NumEle+MD->NumRiv] = DY[i+3*MD->NumEle+MD->NumRiv]/(MD->Ele[i+MD->NumEle].Porosity*MD->Riv[i].Length*CS_AreaOrPerem(MD->Riv_Shape[MD->Riv[i].shape - 1].interpOrd,MD->Riv[i].depth,MD->Riv[i].coeff,3)*UNIT_C);
}
}
realtype Interpolation(TSD *Data, realtype t)
{
int i, success;
realtype result;
i=Data->iCounter;
success = 0;
t=t/(UNIT_C);
while(i<Data->length && t>Data->TS[i][0])
{
i++;
}
if(i==0)
{
/* t is smaller than the 1st node */
result = Data->TS[i][1];
}
else if(i >= Data->length)
{
result = Data->TS[i-1][1];
}
else
{
result = ((Data->TS[i][0]-t)*Data->TS[i-1][1] + (t-Data->TS[i-1][0])*Data->TS[i][1])/(Data->TS[i][0]-Data->TS[i-1][0]);
success = 1;
}
if(success == 0)
{
/*
printf("\nWarning: Extrapolation is used ...\n");
*/
}
return result;
}