-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathpose_dataset.py
executable file
·156 lines (132 loc) · 6.27 KB
/
pose_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import os.path
import torchvision.transforms as transforms
import torch
from PIL import Image
import numpy as np
from data.base_dataset import BaseDataset, get_img_params, get_transform, get_video_params, concat_frame
from data.image_folder import make_grouped_dataset, check_path_valid
from data.keypoint2img import read_keypoints
class PoseDataset(BaseDataset):
def initialize(self, opt):
self.opt = opt
self.root = opt.dataroot
self.dir_dp = os.path.join(opt.dataroot, opt.phase + '_densepose')
self.dir_op = os.path.join(opt.dataroot, opt.phase + '_openpose')
self.dir_img = os.path.join(opt.dataroot, opt.phase + '_img')
self.img_paths = sorted(make_grouped_dataset(self.dir_img))
if not opt.openpose_only:
self.dp_paths = sorted(make_grouped_dataset(self.dir_dp))
check_path_valid(self.dp_paths, self.img_paths)
if not opt.densepose_only:
self.op_paths = sorted(make_grouped_dataset(self.dir_op))
check_path_valid(self.op_paths, self.img_paths)
self.init_frame_idx(self.img_paths)
def __getitem__(self, index):
A, B, _, seq_idx = self.update_frame_idx(self.img_paths, index)
img_paths = self.img_paths[seq_idx]
n_frames_total, start_idx, t_step = get_video_params(self.opt, self.n_frames_total, len(img_paths), self.frame_idx)
img = Image.open(img_paths[start_idx]).convert('RGB')
size = img.size
params = get_img_params(self.opt, size)
frame_range = list(range(n_frames_total)) if (self.opt.isTrain or self.A is None) else [self.opt.n_frames_G-1]
for i in frame_range:
img_path = img_paths[start_idx + i * t_step]
if not self.opt.openpose_only:
dp_path = self.dp_paths[seq_idx][start_idx + i * t_step]
Di = self.get_image(dp_path, size, params, input_type='densepose')
Di[2,:,:] = ((Di[2,:,:] * 0.5 + 0.5) * 255 / 24 - 0.5) / 0.5
if not self.opt.densepose_only:
op_path = self.op_paths[seq_idx][start_idx + i * t_step]
Oi = self.get_image(op_path, size, params, input_type='openpose')
if self.opt.openpose_only:
Ai = Oi
elif self.opt.densepose_only:
Ai = Di
else:
Ai = torch.cat([Di, Oi])
Bi = self.get_image(img_path, size, params, input_type='img')
Ai, Bi = self.crop(Ai), self.crop(Bi) # only crop the central half region to save time
A = concat_frame(A, Ai, n_frames_total)
B = concat_frame(B, Bi, n_frames_total)
if not self.opt.isTrain:
self.A, self.B = A, B
self.frame_idx += 1
change_seq = False if self.opt.isTrain else self.change_seq
return_list = {'A': A, 'B': B, 'inst': 0, 'A_path': img_path, 'change_seq': change_seq}
return return_list
def get_image(self, A_path, size, params, input_type):
if input_type != 'openpose':
A_img = Image.open(A_path).convert('RGB')
else:
random_drop_prob = self.opt.random_drop_prob if self.opt.isTrain else 0
A_img = Image.fromarray(read_keypoints(A_path, size, random_drop_prob, self.opt.remove_face_labels, self.opt.basic_point_only))
if input_type == 'densepose' and self.opt.isTrain:
# randomly remove labels
A_np = np.array(A_img)
part_labels = A_np[:,:,2]
for part_id in range(1, 25):
if (np.random.rand() < self.opt.random_drop_prob):
A_np[(part_labels == part_id), :] = 0
if self.opt.remove_face_labels:
A_np[(part_labels == 23) | (part_labels == 24), :] = 0
A_img = Image.fromarray(A_np)
is_img = input_type == 'img'
method = Image.BICUBIC if is_img else Image.NEAREST
transform_scaleA = get_transform(self.opt, params, method=method)
A_scaled = transform_scaleA(A_img)
return A_scaled
def crop(self, Ai):
w = Ai.size()[2]
base = 32
x_cen = w // 2
bs = int(w * 0.25) // base * base
return Ai[:,:,(x_cen-bs):(x_cen+bs)]
def normalize_pose(self, A_img, target_yc, target_len, first=False):
w, h = A_img.size
A_np = np.array(A_img)
if first == True:
part_labels = A_np[:,:,2]
part_coords = np.nonzero((part_labels == 1) | (part_labels == 2))
y, x = part_coords[0], part_coords[1]
ys, ye = y.min(), y.max()
min_i, max_i = np.argmin(y), np.argmax(y)
v_min = A_np[y[min_i], x[min_i], 1] / 255
v_max = A_np[y[max_i], x[max_i], 1] / 255
ylen = (ye-ys) / (v_max-v_min)
yc = (0.5-v_min) / (v_max-v_min) * (ye-ys) + ys
ratio = target_len / ylen
offset_y = int(yc - (target_yc / ratio))
offset_x = int(w * (1 - 1/ratio) / 2)
padding = int(max(0, max(-offset_y, int(offset_y + h/ratio) - h)))
padding = int(max(padding, max(-offset_x, int(offset_x + w/ratio) - w)))
offset_y += padding
offset_x += padding
self.offset_y, self.offset_x = offset_y, offset_x
self.ratio, self.padding = ratio, padding
p = self.padding
A_np = np.pad(A_np, ((p,p),(p,p),(0,0)), 'constant', constant_values=0)
A_np = A_np[self.offset_y:int(self.offset_y + h/self.ratio), self.offset_x:int(self.offset_x + w/self.ratio):, :]
A_img = Image.fromarray(A_np)
A_img = A_img.resize((w, h))
return A_img
def __len__(self):
return sum(self.frames_count)
def name(self):
return 'PoseDataset'
"""
DensePose label
0 = Background
1, 2 = Torso
3 = Right Hand
4 = Left Hand
5 = Right Foot
6 = Left Foot
7, 9 = Upper Leg Right
8, 10 = Upper Leg Left
11, 13 = Lower Leg Right
12, 14 = Lower Leg Left
15, 17 = Upper Arm Left
16, 18 = Upper Arm Right
19, 21 = Lower Arm Left
20, 22 = Lower Arm Right
23, 24 = Head """