-
Notifications
You must be signed in to change notification settings - Fork 11
/
temporal_dataset.py
executable file
·77 lines (64 loc) · 3.45 KB
/
temporal_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
### Copyright (C) 2017 NVIDIA Corporation. All rights reserved.
### Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
import os.path
import random
import torch
from data.base_dataset import BaseDataset, get_img_params, get_transform, get_video_params
from data.image_folder import make_grouped_dataset, check_path_valid
from PIL import Image
import numpy as np
class TemporalDataset(BaseDataset):
def initialize(self, opt):
self.opt = opt
self.root = opt.dataroot
self.dir_A = os.path.join(opt.dataroot, opt.phase + '_A')
self.dir_B = os.path.join(opt.dataroot, opt.phase + '_B')
self.A_is_label = self.opt.label_nc != 0
self.A_paths = sorted(make_grouped_dataset(self.dir_A))
self.B_paths = sorted(make_grouped_dataset(self.dir_B))
check_path_valid(self.A_paths, self.B_paths)
if opt.use_instance:
self.dir_inst = os.path.join(opt.dataroot, opt.phase + '_inst')
self.I_paths = sorted(make_grouped_dataset(self.dir_inst))
check_path_valid(self.A_paths, self.I_paths)
self.n_of_seqs = len(self.A_paths) # number of sequences to train
self.seq_len_max = max([len(A) for A in self.A_paths])
self.n_frames_total = self.opt.n_frames_total # current number of frames to train in a single iteration
def __getitem__(self, index):
tG = self.opt.n_frames_G
A_paths = self.A_paths[index % self.n_of_seqs]
B_paths = self.B_paths[index % self.n_of_seqs]
if self.opt.use_instance:
I_paths = self.I_paths[index % self.n_of_seqs]
# setting parameters
n_frames_total, start_idx, t_step = get_video_params(self.opt, self.n_frames_total, len(A_paths), index)
# setting transformers
B_img = Image.open(B_paths[start_idx]).convert('RGB')
params = get_img_params(self.opt, B_img.size)
transform_scaleB = get_transform(self.opt, params)
transform_scaleA = get_transform(self.opt, params, method=Image.NEAREST, normalize=False) if self.A_is_label else transform_scaleB
# read in images
A = B = inst = 0
for i in range(n_frames_total):
A_path = A_paths[start_idx + i * t_step]
B_path = B_paths[start_idx + i * t_step]
Ai = self.get_image(A_path, transform_scaleA, is_label=self.A_is_label)
Bi = self.get_image(B_path, transform_scaleB)
A = Ai if i == 0 else torch.cat([A, Ai], dim=0)
B = Bi if i == 0 else torch.cat([B, Bi], dim=0)
if self.opt.use_instance:
I_path = I_paths[start_idx + i * t_step]
Ii = self.get_image(I_path, transform_scaleA) * 255.0
inst = Ii if i == 0 else torch.cat([inst, Ii], dim=0)
return_list = {'A': A, 'B': B, 'inst': inst, 'A_path': A_path, 'B_paths': B_path}
return return_list
def get_image(self, A_path, transform_scaleA, is_label=False):
A_img = Image.open(A_path)
A_scaled = transform_scaleA(A_img)
if is_label:
A_scaled *= 255.0
return A_scaled
def __len__(self):
return len(self.A_paths)
def name(self):
return 'TemporalDataset'